Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Temporal Development Of Electric Field Structures In Photoconductive Gaas Switches, K. H. Schoenbach, J. S. Kenney, F.E. Peterkin, R. J. Allen Jan 1993

Temporal Development Of Electric Field Structures In Photoconductive Gaas Switches, K. H. Schoenbach, J. S. Kenney, F.E. Peterkin, R. J. Allen

Bioelectrics Publications

The temporal development of the electric field distribution in semi‐insulating GaAs photoconductive switches operated in the linear and lock‐on mode has been studied. The field structure was obtained by recording a change in the absorption pattern of the switch due to the Franz–Keldysh effect at a wavelength near the band edge of GaAs. In the linear mode, a high field layer develops at the cathode contact after laser activation. With increasing applied voltage, domainlike structures become visible in the anode region and the switch transits into the lock‐on state, a permanent filamentary electrical discharge. Calibration measurements show the field intensity …


Paschen's Law For A Hollow Cathode Discharge, H. Eichhorn, K. H. Schoenbach, T. Tessnow Jan 1993

Paschen's Law For A Hollow Cathode Discharge, H. Eichhorn, K. H. Schoenbach, T. Tessnow

Bioelectrics Publications

An expression for the breakdown voltage of a one‐dimensional hollow cathode discharge has been derived. The breakdown condition which corresponds to Paschen’s law contains, in addition to the first Townsend coefficient, and the secondary electron emission coefficient two parameters which characterize the reflecting action of the electric field and the lifetime of the electrons in the discharge. The breakdown voltage for a hollow cathode discharge in helium was calculated and compared to that of a glow discharge operating under similar conditions.


Studies Of Electron-Beam Penetration And Free-Carrier Generation In Diamond Films, R. P. Joshi, K. H. Schoenbach, C. Molina, W. W. Hofer Jan 1993

Studies Of Electron-Beam Penetration And Free-Carrier Generation In Diamond Films, R. P. Joshi, K. H. Schoenbach, C. Molina, W. W. Hofer

Bioelectrics Publications

Experimental observations of the energy‐dependent electron‐beam penetration in type II‐A natural diamond are reported. The experimental data are compared with results obtained from numerical Monte Carlo simulations, and the results are in very good agreement. The results also reveal that a threshold energy of about 125 keV is necessary for complete penetration for a 35 μm sample. It is found that over the 30–180 keV range, the energy dependence of the penetration depth and total path length exhibits a power‐law relation. Monte Carlo simulations have also been performed to investigate the excess carrier‐generation profiles within diamond for a set of …