Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

University of South Carolina

2002

Electric fields

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Polarization Effects In Photoluminescence Of C- And M-Plane Gan/Algan Multiple Quantum Wells, E. Kuokstis, C. Q. Chen, M. E. Gaevski, W. H. Sun, J. W. Yang, Grigory Simin, M. Asif Khan, H. P. Maruska, D. W. Hill, M. C. Chou, J. J. Gallagher, B. Chai Nov 2002

Polarization Effects In Photoluminescence Of C- And M-Plane Gan/Algan Multiple Quantum Wells, E. Kuokstis, C. Q. Chen, M. E. Gaevski, W. H. Sun, J. W. Yang, Grigory Simin, M. Asif Khan, H. P. Maruska, D. W. Hill, M. C. Chou, J. J. Gallagher, B. Chai

Faculty Publications

Polarizationeffects have been studied in GaN/AlGaN multiple quantum wells(MQWs) with different c-axis orientation by means of excitation-dependent photoluminescence(PL) analysis. Quantum structures were grown on [0001]-oriented sapphire substrates (C plane) and single-crystalline [11̄00]-oriented freestanding GaN (M plane) using the metalorganic chemical vapor deposition technique. Strong PL spectrum line blueshifts (up to 140 meV) which are correlated with the excitation intensity have been obtained for C-plane MQWs, whereas no shift has been observed for M-plane MQWs.Theoretical calculations and comparison with the PL data confirm that the built-in electric field for C-plane structures is much stronger than the field present for M-plane MQWs. …


Two Mechanisms Of Blueshift Of Edge Emission In Ingan-Based Epilayers And Multiple Quantum Wells, E. Kuokstis, J. W. Yang, Grigory Simin, M. Asif Khan, R. Gaska, M. S. Shur Feb 2002

Two Mechanisms Of Blueshift Of Edge Emission In Ingan-Based Epilayers And Multiple Quantum Wells, E. Kuokstis, J. W. Yang, Grigory Simin, M. Asif Khan, R. Gaska, M. S. Shur

Faculty Publications

We present the results of a comparative photoluminescence(PL) study of GaN and InGaN-based epilayers, and InGaN/GaN multiple quantum wells(MQWs). Room-temperature PL spectra were measured for a very broad range of optical excitation from 10 mW/cm2 up to 1 MW/cm2. In contrast to GaN epilayers, all In-containing samples exhibited an excitation-induced blueshift of the peak emission. In addition, the blueshift of the emission in the InGaN epilayers with the same composition as the quantum well was significantly smaller. The comparison of the blueshift in the “bulk” InGaN and in the MQWs allowed us to separate two different mechanisms …