Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

University of Kentucky

2020

Smart Home

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Demand Response Of Hvacs In Large Residential Communities Based On Experimental Developments, Huangjie Gong, Evan S. Jones, Rosemary E. Alden, Andrew G. Frye, Donald G. Colliver, Dan M. Ionel Oct 2020

Demand Response Of Hvacs In Large Residential Communities Based On Experimental Developments, Huangjie Gong, Evan S. Jones, Rosemary E. Alden, Andrew G. Frye, Donald G. Colliver, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

Heating, ventilation, and air-conditioning (HVAC) systems contribute the largest electricity usage for a residential community. Modeling of the HVAC systems facilitate the study of demand response (DR) at both the residential and the power system level. In this paper, the equivalent thermal model of a reference house was proposed. Parameters for the reference house were determined based on the systematic study of experimental data obtained from fully instrumented field demonstrators. The aggregated HVAC load was modeled based on the reference house while considering a realistic distribution of HVAC parameters derived from data that was provided by one of the largest …


The Effect Of High Efficiency Building Technologies And Pv Generation On The Energy Profiles For Typical Us Residences, Evan S. Jones, Rosemary E. Alden, Huangjie Gong, Andrew G. Frye, Donald G. Colliver, Dan M. Ionel Sep 2020

The Effect Of High Efficiency Building Technologies And Pv Generation On The Energy Profiles For Typical Us Residences, Evan S. Jones, Rosemary E. Alden, Huangjie Gong, Andrew G. Frye, Donald G. Colliver, Dan M. Ionel

Power and Energy Institute of Kentucky Faculty Publications

The penetrations of high efficiency technologies and photovoltaic (PV) generation are increasing in the residential sector. Technologies such as improved insulation and efficient HVAC systems significantly affect the energy profile of a house. This effect varies due to climate characteristics, i.e. temperature, solar radiation, relative humidity, and wind speeds. The effect of other technologies, such as efficient water heaters, lighting, or kitchen appliances, is mainly governed by human behavior, which may be represented by a schedule. This paper studies the performance of both climate-influenced and scheduled household devices among different levels of efficiency through combined computational and experimental methods. Three …