Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

University of Dayton

Electrical and Computer Engineering Faculty Publications

Convolutional neural network

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Resampling And Super-Resolution Of Hexagonally Sampled Images Using Deep Learning, Dylan Flaute, Russell C. Hardie, Hamed Elwarfalli Oct 2021

Resampling And Super-Resolution Of Hexagonally Sampled Images Using Deep Learning, Dylan Flaute, Russell C. Hardie, Hamed Elwarfalli

Electrical and Computer Engineering Faculty Publications

Super-resolution (SR) aims to increase the resolution of imagery. Applications include security, medical imaging, and object recognition. We propose a deep learning-based SR system that takes a hexagonally sampled low-resolution image as an input and generates a rectangularly sampled SR image as an output. For training and testing, we use a realistic observation model that includes optical degradation from diffraction and sensor degradation from detector integration. Our SR approach first uses non-uniform interpolation to partially upsample the observed hexagonal imagery and convert it to a rectangular grid. We then leverage a state-of-the-art convolutional neural network (CNN) architecture designed for SR …


Deep Learning For Anisoplanatic Optical Turbulence Mitigation In Long-Range Imaging, Matthew A. Hoffmire, Russell C. Hardie, Michael A. Rucci, Richard Van Hook, Barry K. Karch Mar 2021

Deep Learning For Anisoplanatic Optical Turbulence Mitigation In Long-Range Imaging, Matthew A. Hoffmire, Russell C. Hardie, Michael A. Rucci, Richard Van Hook, Barry K. Karch

Electrical and Computer Engineering Faculty Publications

We present a deep learning approach for restoring images degraded by atmospheric optical turbulence. We consider the case of terrestrial imaging over long ranges with a wide field-of-view. This produces an anisoplanatic imaging scenario where turbulence warping and blurring vary spatially across the image. The proposed turbulence mitigation (TM) method assumes that a sequence of short-exposure images is acquired. A block matching (BM) registration algorithm is applied to the observed frames for dewarping, and the resulting images are averaged. A convolutional neural network (CNN) is then employed to perform spatially adaptive restoration. We refer to the proposed TM algorithm as …


Fifnet: A Convolutional Neural Network For Motion-Based Multiframe Super-Resolution Using Fusion Of Interpolated Frames, Hamed Elwarfalli, Russell C. Hardie Jan 2021

Fifnet: A Convolutional Neural Network For Motion-Based Multiframe Super-Resolution Using Fusion Of Interpolated Frames, Hamed Elwarfalli, Russell C. Hardie

Electrical and Computer Engineering Faculty Publications

We present a novel motion-based multiframe image super-resolution (SR) algorithm using a convolutional neural network (CNN) that fuses multiple interpolated input frames to produce an SR output. We refer to the proposed CNN and associated preprocessing as the Fusion of Interpolated Frames Network (FIFNET). We believe this is the first such CNN approach in the literature to perform motion-based multiframe SR by fusing multiple input frames in a single network. We study the FIFNET using translational interframe motion with both fixed and random frame shifts. The input to the network is a sequence of interpolated and aligned frames. One key …