Open Access. Powered by Scholars. Published by Universities.®
- File Type
Articles 1 - 4 of 4
Full-Text Articles in Engineering
Microwave Magnetoelectric Coupling And Ferromagnetic Resonance Frequency Tuning Of A Co₂Mnsb/Gaas/Pzn-Pt Heterostructure, Yajie Chen, Aria Yang, Moti Paudel, Shane Stadler, C. Vittoria, V. Harris
Microwave Magnetoelectric Coupling And Ferromagnetic Resonance Frequency Tuning Of A Co₂Mnsb/Gaas/Pzn-Pt Heterostructure, Yajie Chen, Aria Yang, Moti Paudel, Shane Stadler, C. Vittoria, V. Harris
Vincent G. Harris
A systematic study of electric-field-tuned ferromagnetic resonance (FMR) of a ferroelectric/ferromagnetic/semiconductor multiferroic heterostructure, consisting of a Co₂MnSb epitaxial film grown on a GaAs substrate bonded to a lead zinc niobate-lead titanate crystal, is reported. The films, grown by pulsed laser deposition, were studied for their crystallographic structure, magnetocrystalline anisotropy, and magnetostrictive and ferromagnetic resonance properties. Ferromagnetic resonance measurements were carried out at X-band frequency under the application of electric fields with external magnetic fields applied along the [110], [100], [1Ī0] and [001] directions of the Heusler film. Magnetic anisotropy fields were derived from the angular dependence of FMR measurements, yielding …
Large Converse Magnetoelectric Coupling In Fecov/Lead Zinc Niobate-Lead Titanate Heterostructure, Yajie Chen, Jinsheng Gao, Trifon Fitchorov, Zhuhua Cai, K. S. Ziemer, Carmine Vittoria, V. G. Harris
Large Converse Magnetoelectric Coupling In Fecov/Lead Zinc Niobate-Lead Titanate Heterostructure, Yajie Chen, Jinsheng Gao, Trifon Fitchorov, Zhuhua Cai, K. S. Ziemer, Carmine Vittoria, V. G. Harris
Vincent G. Harris
Multiferroic behavior was directly verified in a laminated ferroelectric-ferromagnetic heterostructure consisting of a FeCoV thick film (70 μm) and lead zinc niobate-lead titanate (PZN-PT) single crystal. This unique heterostructure demonstrates a significant converse magnetoelectric (CME) effect corresponding to a CME coupling constant of 31 Oe/kV cm⁻¹ It derives from the soft magnetic and magnetostrictive properties (λ=60 ppm) of FeCoV alloy and the superior electromechanical properties (d32=-2800 pC/N) of PZN-PT crystal. The electric field controlled magnetic hysteresis is discussed in terms of a stress-induced anisotropy field model. The theoretical calculation is within 7% of the measured induced field of 240 Oe.
Giant Magnetoelectric Coupling And E-Field Tunability In A Laminated Ni2mnga/Lead-Magnesium-Niobate-Lead Titanate Multiferroic Heterostructure, Yajie Chen, Jingmin Wang, Ming Liu, Jing Lou, Nian X. Sun, Carmine Vittoria, Vincent G. Harris
Giant Magnetoelectric Coupling And E-Field Tunability In A Laminated Ni2mnga/Lead-Magnesium-Niobate-Lead Titanate Multiferroic Heterostructure, Yajie Chen, Jingmin Wang, Ming Liu, Jing Lou, Nian X. Sun, Carmine Vittoria, Vincent G. Harris
Vincent G. Harris
The multiferroic properties of a laminated heterostructure consisting of magnetostrictive Ni2MnGa ribbon and piezoelectric lead-magnesium-niobate-lead titanate crystal are reported. A tunability of the electric field-induced magnetic field was measured by a shift in the ferromagnetic resonance (FMR) field by 230 Oe at X-band while applying an electric field of 6 kV/cm. Concomitantly, a frequency shift in the FMR of 370 MHz was observed. The sensitive tunability stems from a large linear magnetoelectric coupling coefficient, A=41 Oe cm/kV, measured in the heterostructure. This represents a new class of metallic multiferroic heterostructures that operate at microwave frequencies.
Time Domain Analyses Of The Converse Magnetoelectric Effect In A Multiferroic Metallic Glass-Relaxor Ferroelectric Heterostructure, Yajie Chen, Anton L. Geiler, Trifon Fitchorov, Carmine Vittoria, V. G. Harris
Time Domain Analyses Of The Converse Magnetoelectric Effect In A Multiferroic Metallic Glass-Relaxor Ferroelectric Heterostructure, Yajie Chen, Anton L. Geiler, Trifon Fitchorov, Carmine Vittoria, V. G. Harris
Vincent G. Harris
The dynamic time domain response of the converse magnetoelectric effect in a multiferroic Metglas®/Pb(Mg1/3Nb2/3)O₃-PbTiO₃ (PMN-PT) heterostructure, under the application of a square waveform electric field excitation of 8 kV/cm at a frequency of 0.4 Hz, is reported. The relaxation behavior followed a stretched power-law function allowing the calculation of an intrinsic time constant. Aging behavior of magnetoelectric coupling was observed after polarization switching of 1000 cycles. These phenomena are predominantly attributed to the temporal response of polarization within the PMN-PT crystal. Results elucidate the dynamic properties of relaxor-based multiferroic heterostructures and importantly define operational constraints for low frequency device operation.