Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Selected Works

Nian X. Sun

2012

Microwave properties

Articles 1 - 2 of 2

Full-Text Articles in Engineering

The Effect Of Boron Addition On The Atomic Structure And Microwave Magnetic Properties Of Fegab Thin Films, Jinsheng Gao, Aria Yang, Yajie Chen, J. P. Kirkland, Jing Lou, Nian X. Sun, Carmine Vittoria, Vincent G. Harris Apr 2012

The Effect Of Boron Addition On The Atomic Structure And Microwave Magnetic Properties Of Fegab Thin Films, Jinsheng Gao, Aria Yang, Yajie Chen, J. P. Kirkland, Jing Lou, Nian X. Sun, Carmine Vittoria, Vincent G. Harris

Nian X. Sun

Varying amounts of boron were added to the host FeGa alloy to investigate its impact upon local atomic structure and magnetic and microwave properties. The impact of B upon the local atomic structure in FeGaB films was investigated by extended x-ray absorption fine structure (EXAFS) analysis. The EXAFS fitting results revealed a contraction of lattice parameters with the introduction of B. The Debye-Waller factor determined from EXAFS fitting increases as a function of boron addition and abruptly changes during the structural evolution from crystalline to amorphous that occurs near 9% B. Upon the onset of this transition the static and …


Effects Of Boron Addition To The Atomic Structure And Soft Magnetic Properties Of Fecob Films, Aria Yang, Hassan Imrane, Jing Lou, Johnny Kirkland, Carmine Vittoria, Nian Sun, Vincent G. Harris Apr 2012

Effects Of Boron Addition To The Atomic Structure And Soft Magnetic Properties Of Fecob Films, Aria Yang, Hassan Imrane, Jing Lou, Johnny Kirkland, Carmine Vittoria, Nian Sun, Vincent G. Harris

Nian X. Sun

The magnetic, microwave, and the atomic structure properties of (Fe₀.₇Co₀.₃)1-xBx sputtered films on glass substrates were investigated. The addition of boron induced a decrease in coercivity and ferromagnetic resonance linewidth. The amorphous structure was formed at x ∽0.075. Extended x-ray absorption fine structure (EXAFS) of Fe and Co showed the reduced Fourier transform (FT) amplitude, and increased Debye-Waller factors as x was increased, indicating the increased disorder due to the thermal and structural displacements. Possible Fe-B bonding was observed with a reduced bond length, which indicates boron atoms' preference for staying in the interstitial sites in bcc unit cell.