Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Portland State University

2024

Ocean sounds

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Meso-Scale Seabed Quantification With Geoacoustic Inversion, Tim Sonnemann, Jan Dettmer, Charles W. Holland, Stan E. Dosso Apr 2024

Meso-Scale Seabed Quantification With Geoacoustic Inversion, Tim Sonnemann, Jan Dettmer, Charles W. Holland, Stan E. Dosso

Electrical and Computer Engineering Faculty Publications and Presentations

Abstract Knowledge of sub-seabed geoacoustic properties, for example depth dependent sound speed and porosity, is of importance for a variety of applications. Here, we present a semi-automated geoacoustic inversion method for autonomous underwater vehicle data that objectively adapts model inference to seabed structure. Through parallelized trans-dimensional Bayesian inference, we infer seabed properties along a 12 km survey track on the scale of about 10 cm and 50 m in the vertical and horizontal, respectively. The inferred seabed properties include sound speed, attenuation, density, and porosity as a function of depth from acoustic reflection coefficient data. Parameter uncertainties are quantified, and …


Source Level Of Wind-Generated Ambient Sound In The Oceana, N. Ross Chapman, Michael Ainslie, Martin Siderius Mar 2024

Source Level Of Wind-Generated Ambient Sound In The Oceana, N. Ross Chapman, Michael Ainslie, Martin Siderius

Electrical and Computer Engineering Faculty Publications and Presentations

Inference of source levels for ambient ocean sound from local wind at the sea surface requires an assumption about the nature of the sound source. Depending upon the assumptions made about the nature of the sound source, whether monopole or dipole distributions, the estimated source levels from different research groups are different by several decibels over the frequency band 10–350 Hz. This paper revisits the research issues of source level of local wind-generated sound and shows that the differences in estimated source levels can be understood through a simple analysis of the source assumptions.