Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Portland State University

Electrical and Computer Engineering Faculty Publications and Presentations

2023

Data Mining

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Quantum Algorithms For Unate And Binate Covering Problems With Application To Finite State Machine Minimization, Abdirahman Alasow, Marek Perkowski Dec 2023

Quantum Algorithms For Unate And Binate Covering Problems With Application To Finite State Machine Minimization, Abdirahman Alasow, Marek Perkowski

Electrical and Computer Engineering Faculty Publications and Presentations

Covering problems find applications in many areas of computer science and engineering, such that numerous combinatorial problems can be formulated as covering problems. Combinatorial optimization problems are generally NPhard problems that require an extensive search to find the optimal solution. Exploiting the benefits of quantum computing, we present a quantum oracle design for covering problems, taking advantage of Grover’s search algorithm to achieve quadratic speedup. This paper also discusses applications of the quantum counter in unate covering problems and binate covering problems with some important practical applications, such as finding prime implicants of a Boolean function, implication graphs, and minimization …


Quantum Algorithm For Mining Frequent Patterns For Association Rule Mining, Abdirahman Alasow, Marek Perkowski Mar 2023

Quantum Algorithm For Mining Frequent Patterns For Association Rule Mining, Abdirahman Alasow, Marek Perkowski

Electrical and Computer Engineering Faculty Publications and Presentations

Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum …