Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Portland State University

Electrical and Computer Engineering Faculty Publications and Presentations

2022

Ocean sounds

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Selected Topics Of The Past Thirty Years In Ocean Acoustics, Michael D. Collins, Altan Turgut, Michael J. Buckingham, Peter Gerstoft, Martin Siderius Nov 2022

Selected Topics Of The Past Thirty Years In Ocean Acoustics, Michael D. Collins, Altan Turgut, Michael J. Buckingham, Peter Gerstoft, Martin Siderius

Electrical and Computer Engineering Faculty Publications and Presentations

This paper reviews some of the highlights of selected topics in ocean acoustics during the thirty years that have passed since the founding of the Journal of Theoretical and Computational Acoustics. Advances in computational methods and computers helped to make computational ocean acoustics a vibrant area of research during that period. The parabolic equation method provides an unrivaled combination of accuracy and efficiency for propagation problems in which the bathymetry, sound speed, and other environmental parameters vary in the horizontal directions. The extension of this approach to cases involving layers that support shear waves has been an active area …


Real-Time Joint Ocean Acoustics And Circulation Modeling In The 2021 New England Shelf Break Acoustics Experiment (L), Brendan J. Decourcy, Ying-Tsong Lin, Weifeng Gordon Zhang, Emma Reeves Ozanich, Natalie Kukshtel, Martin Siderius, Glen Gawarkiewicz, Jacob Forsyth Nov 2022

Real-Time Joint Ocean Acoustics And Circulation Modeling In The 2021 New England Shelf Break Acoustics Experiment (L), Brendan J. Decourcy, Ying-Tsong Lin, Weifeng Gordon Zhang, Emma Reeves Ozanich, Natalie Kukshtel, Martin Siderius, Glen Gawarkiewicz, Jacob Forsyth

Electrical and Computer Engineering Faculty Publications and Presentations

During the spring of 2021, a coordinated multi-vessel effort was organized to study physical oceanography, marine geology and biology, and acoustics on the northeast United States continental shelf, as part of the New England Shelf Break Acoustics (NESBA) experiment. One scientific goal was to establish a real-time numerical model aboard the research vessel with high spatial and temporal resolution to predict the oceanography and sound propagation within the NESBA study area. The real-time forecast model performance and challenges are reported in this letter without adjustment or re-simulation after the cruise. Future research directions for post-experiment studies are also suggested.