Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Portland State University

Electrical and Computer Engineering Faculty Publications and Presentations

2004

Quantum theory

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Testing A Quantum Computer, Marek Perkowski, Jacob D. Biamonte Aug 2004

Testing A Quantum Computer, Marek Perkowski, Jacob D. Biamonte

Electrical and Computer Engineering Faculty Publications and Presentations

We address the problem of quantum test set generation using measurement from a single basis and the single fault model. Experimental physicists currently test quantum circuits exhaustively, meaning that each n-bit permutative circuit requires ζ x 2n tests to assure functionality, and for an m stage permutative circuit proven not to function properly the current method requires ζ x 2n x m tests as the upper bound for fault localization, where zeta varies with physical implementation. Indeed, the exhaustive methods complexity grows exponentially with the number of qubits, proportionally to the number of stages in a quantum circuit and directly …


Synthesis Of Reversible Circuits From A Subset Of Muthukrishnan-Stroud Quantum Realizable Multi-Valued Gates, Marek Perkowski, Nicholas Denler, Bruce Yen, Pawel Kerntopf Jan 2004

Synthesis Of Reversible Circuits From A Subset Of Muthukrishnan-Stroud Quantum Realizable Multi-Valued Gates, Marek Perkowski, Nicholas Denler, Bruce Yen, Pawel Kerntopf

Electrical and Computer Engineering Faculty Publications and Presentations

We present a new type of quantum realizable reversible cascade. Next we present a new algorithm to synthesize arbitrary single-output ternary functions using these reversible cascades. The cascades use “Generalized Multi-Valued Gates” introduced here, which extend the concept of Generalized Ternary Gates introduced previously. While there were 216 GTGs, a total of 12 ternary gates of the new type are sufficient to realize arbitrary ternary functions. (The count can be further reduced to 5 gates, three 2-qubit and two 1-qubit). Such gates are realizable in quantum ion trap devices. For some functions, the algorithm requires fewer gates than results previously …