Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Electrochemical Detection Of Neurotransmitters, Saikat Banerjee, Stephanie Mccracken, Md Faruk Hossain, Gymama Slaughter Jan 2020

Electrochemical Detection Of Neurotransmitters, Saikat Banerjee, Stephanie Mccracken, Md Faruk Hossain, Gymama Slaughter

Bioelectrics Publications

Neurotransmitters are important chemical messengers in the nervous system that play a crucial role in physiological and physical health. Abnormal levels of neurotransmitters have been correlated with physical, psychotic, and neurodegenerative diseases such as Alzheimer's, Parkinson's, dementia, addiction, depression, and schizophrenia. Although multiple neurotechnological approaches have been reported in the literature, the detection and monitoring of neurotransmitters in the brain remains a challenge and continues to garner significant attention. Neurotechnology that provides high-throughput, as well as fast and specific quantification of target analytes in the brain, without negatively impacting the implanted region is highly desired for the monitoring of the …


Challenges In Design And Fabrication Of Flexible/Stretchable Carbon- And Textile-Based Wearable Sensors For Health Monitoring: A Critical Review, Jae Seng Heo, Md Faruk Hossain, Insoo Kim Jan 2020

Challenges In Design And Fabrication Of Flexible/Stretchable Carbon- And Textile-Based Wearable Sensors For Health Monitoring: A Critical Review, Jae Seng Heo, Md Faruk Hossain, Insoo Kim

Bioelectrics Publications

To demonstrate the wearable flexible/stretchable health-monitoring sensor, it is necessary to develop advanced functional materials and fabrication technologies. Among the various developed materials and fabrication processes for wearable sensors, carbon-based materials and textile-based configurations are considered as promising approaches due to their outstanding characteristics such as high conductivity, lightweight, high mechanical properties, wearability, and biocompatibility. Despite these advantages, in order to realize practical wearable applications, electrical and mechanical performances such as sensitivity, stability, and long-term use are still not satisfied. Accordingly, in this review, we describe recent advances in process technologies to fabricate advanced carbon-based materials and textile-based sensors, followed …


Quadrupoles For Remote Electrostimulation Incorporating Bipolar Cancellation, Shu Xiao, Ryo Yamada, Carol Zhou Jan 2020

Quadrupoles For Remote Electrostimulation Incorporating Bipolar Cancellation, Shu Xiao, Ryo Yamada, Carol Zhou

Bioelectrics Publications

Introduction: A method that utilizes nanosecond bipolar cancellation (BPC) near a quadrupole electrodes to suppress a biological response but cancels the distal BPC at the quadrupole center, i.e., cancellation of cancellation (CANCAN), may allow for a remote focused stimulation at the quadrupole center.

Objectives: The primary object of this study was to outline the requirement of the CANCAN implementation and select an effective quadrupole configuration.

Results: We have studied three quadrupole electrode configurations, a rod quadrupole, a plate quadrupole (Plate-Q), and a resistor quadrupole. The pulse shapes of electric fields include monophasic pulses, cancellation pulses, and additive pulses. The Plate-Q …


Effects Of Plasma-Activated Water On Skin Wound Healing In Mice, Dehui Xu, Shuai Wang, Bing Li, Miao Qi, Rui Feng, Qiaosong Li, Hao Zhang, Hailan Chen, Michael G. Kong Jan 2020

Effects Of Plasma-Activated Water On Skin Wound Healing In Mice, Dehui Xu, Shuai Wang, Bing Li, Miao Qi, Rui Feng, Qiaosong Li, Hao Zhang, Hailan Chen, Michael G. Kong

Bioelectrics Publications

Cold atmospheric plasma (CAP) has been widely used in biomedicine during the last two decades. While direct plasma treatment has been reported to promote wound healing, its application can be uneven and inconvenient. In this study, we first activated water with a portable dielectric barrier discharge plasma device and evaluated the inactivation effect of plasma-activated water (PAW) on several kinds of bacteria that commonly infect wounds. The results show that PAW can effectively inactivate these bacteria. Then, we activated tap water and examined the efficacy of PAW on wound healing in a mouse model of full-thickness skin wounds. We found …