Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Missouri University of Science and Technology

2021

Blunt-Force Impact-Induced Brain Injury

Articles 1 - 1 of 1

Full-Text Articles in Engineering

Fiber Optic Sensor Embedded Smart Helmet For Real-Time Impact Sensing And Analysis Through Machine Learning, Yiyang Zhuang, Qingbo Yang, Taihao Han, Ryan O'Malley, Aditya Kumar, Rex E. Gerald Ii, Jie Huang Mar 2021

Fiber Optic Sensor Embedded Smart Helmet For Real-Time Impact Sensing And Analysis Through Machine Learning, Yiyang Zhuang, Qingbo Yang, Taihao Han, Ryan O'Malley, Aditya Kumar, Rex E. Gerald Ii, Jie Huang

Electrical and Computer Engineering Faculty Research & Creative Works

Background: Mild traumatic brain injury (mTBI) strongly associates with chronic neurodegenerative impairments such as post-traumatic stress disorder (PTSD) and mild cognitive impairment. Early detection of concussive events would significantly enhance the understanding of head injuries and provide better guidance for urgent diagnoses and the best clinical practices for achieving full recovery. New method: A smart helmet was developed with a single embedded fiber Bragg grating (FBG) sensor for real-time sensing of blunt-force impact events to helmets. The transient signals provide both magnitude and directional information about the impact event, and the data can be used for training machine learning (ML) …