Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Marquette University

Reluctance motors

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Computationally Efficient Optimization Of A Five-Phase Flux-Switching Pm Machine Under Different Operating Conditions, Hao Chen, Xiangdong Liu, Nabeel Demerdash, Ayman M. El-Refaie, Zhen Chen, Jiangbiao He May 2019

Computationally Efficient Optimization Of A Five-Phase Flux-Switching Pm Machine Under Different Operating Conditions, Hao Chen, Xiangdong Liu, Nabeel Demerdash, Ayman M. El-Refaie, Zhen Chen, Jiangbiao He

Electrical and Computer Engineering Faculty Research and Publications

This paper investigates the comparative design optimizations of a five-phase outer-rotor flux-switching permanent magnet (FSPM) machine for in-wheel traction applications. To improve the comprehensive performance of the motor, two kinds of large-scale design optimizations under different operating conditions are performed and compared, including the traditional optimization performed at the rated operating point and the optimization targeting the whole driving cycles. Three driving cycles are taken into account, namely, the urban dynamometer driving schedule (UDDS), the highway fuel economy driving schedule (HWFET), and the combined UDDS/HWFET, representing the city, highway, and combined city/highway driving, respectively. Meanwhile, the computationally efficient finite-element analysis …


Large-Scale Design Optimization Of Pm Machines Over A Target Operating Cycle, Alireza Fatemi, Nabeel Demerdash, Thomas W. Nehl, Dan M. Ionel Sep 2016

Large-Scale Design Optimization Of Pm Machines Over A Target Operating Cycle, Alireza Fatemi, Nabeel Demerdash, Thomas W. Nehl, Dan M. Ionel

Electrical and Computer Engineering Faculty Research and Publications

A large-scale finite element model-based design optimization algorithm is developed for improving the drive-cycle efficiency of permanent magnet (PM) synchronous machines with wide operating ranges such as those used in traction propulsion motors. The load operating cycle is efficiently modeled by using a systematic k-means clustering method to identify the operating points representing the high-energy-throughput zones in the torque-speed plane. The machine performance is evaluated over these cyclic representative points using a recently introduced computationally efficient finite element analysis, which is upgraded to include both constant torque and field-weakening operations in the evaluation of the machine performance metrics. In contrast …


Robust Non-Permanent Magnet Motors For Vehicle Propulsion, Tsarajidy Raminosoa, David A. Torrey, Ayman M. El-Refaie, Di Pan, Stefan Grubic, Kevin Grace Feb 2016

Robust Non-Permanent Magnet Motors For Vehicle Propulsion, Tsarajidy Raminosoa, David A. Torrey, Ayman M. El-Refaie, Di Pan, Stefan Grubic, Kevin Grace

Electrical and Computer Engineering Faculty Research and Publications

There has been growing interest in electrical machines that reduce or eliminate rare-earth material content. Traction applications are among the key applications where reducing cost and hence reduction or elimination of rare-earth materials is a key requirement. This paper will assess the potential of three non-permanent magnet options in the context of vehicle propulsion applications: 1) a conventional Switched Reluctance Machine (SRM), 2) a DC-biased Reluctance Machine (DCRM) and, 3) a Wound Field Flux Switching Machine (WFFSM). The three machines were designed to achieve the hybrid vehicle traction requirements of 55kW peak and 30kW continuous over a speed range going …


Analysis And Diagnostics Of Adjacent And Nonadjacent Broken-Rotor-Bar Faults In Squirrel-Cage Induction Machines, Gennadi Y. Sizov, Ahmed Mohamed Sayed Ahmed, Chia-Chou Yeh, Nabeel Demerdash Nov 2009

Analysis And Diagnostics Of Adjacent And Nonadjacent Broken-Rotor-Bar Faults In Squirrel-Cage Induction Machines, Gennadi Y. Sizov, Ahmed Mohamed Sayed Ahmed, Chia-Chou Yeh, Nabeel Demerdash

Electrical and Computer Engineering Faculty Research and Publications

In this paper, faults associated with the rotor of an induction machine are considered. More specifically, effects of adjacent and nonadjacent bar breakages on rotor fault diagnostics in squirrel-cage induction machines are studied. It is shown that some nonadjacent bar breakages may result in the masking of the commonly used fault indices and, hence, may lead to a possible misdiagnosis of the machine. A discussion of the possible scenarios of these breakages as well as some conclusions regarding the types of squirrel-cage induction machines (number of poles, number of squirrel-cage bars, etc.) that may be more prone to these nonadjacent …