Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Florida International University

Series

Graphene

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Study Of Charge Carrier Transport In Graphene And Graphite As Two Dimensional And Quasi-Two Dimensional Materials And Their Interfaces, Nalat Sornkhampan Mar 2019

Study Of Charge Carrier Transport In Graphene And Graphite As Two Dimensional And Quasi-Two Dimensional Materials And Their Interfaces, Nalat Sornkhampan

FIU Electronic Theses and Dissertations

Evidence of superconductivity in phosphorous-doped graphite and graphene has been observed at temperatures in the vicinity of 260 K. This evidence includes transport current, magnetic susceptibility, Hall and Nernst measurements. All of these measurements indicate a transition of a type II superconductor without a phase of type I until below the limits of the measurement capabilities.

Vortex states are inferred from periodically repeated steps in the R vs. T characteristics of Highly Oriented Pyrolytic Graphite and exfoliated doped multilayer graphene. The presence of vortices has been confirmed with thermal gradient driven Nernst measurements. Magnetic susceptibility measurements have shown results qualitatively …


Band Gap Engineering Of 2d Nanomaterials And Graphene Based Heterostructure Devices, Md Monirojjaman Monshi Jul 2017

Band Gap Engineering Of 2d Nanomaterials And Graphene Based Heterostructure Devices, Md Monirojjaman Monshi

FIU Electronic Theses and Dissertations

Two-Dimensional (2D) materials often exhibit distinguished properties as compared to their 3D counterparts and offer great potential to advance technology. However, even graphene, the first synthesized 2D material, still faces several challenges, despite its high mobility and high thermal conductivity. Similarly, germanene and silicene face challenges due to readily available semiconducting properties to be used in electronics, photonics or photocatalysis applications. Here, we propose two approaches to tune the band gap: One is by forming nanoribbon and edge functionalization and another by doping using inorganic nanoparticle’s interaction with 2D nanomaterials.

Edge functionalization of armchair germanene nanoribbons (AGeNRs) has the potential …


Electronic And Magnetic Properties Of Two-Dimensional Nanomaterials Beyond Graphene And Their Gas Sensing Applications: Silicene, Germanene, And Boron Carbide, Sadegh Mehdi Aghaei Jun 2017

Electronic And Magnetic Properties Of Two-Dimensional Nanomaterials Beyond Graphene And Their Gas Sensing Applications: Silicene, Germanene, And Boron Carbide, Sadegh Mehdi Aghaei

FIU Electronic Theses and Dissertations

The popularity of graphene owing to its unique properties has triggered huge interest in other two-dimensional (2D) nanomaterials. Among them, silicene shows considerable promise for electronic devices due to the expected compatibility with silicon electronics. However, the high-end potential application of silicene in electronic devices is limited owing to the lack of an energy band gap. Hence, the principal objective of this research is to tune the electronic and magnetic properties of silicene related nanomaterials through first-principles models.

I first explored the impact of edge functionalization and doping on the stabilities, electronic, and magnetic properties of silicene nanoribbons (SiNRs) and …


Sonochemical Synthesis Of Zinc Oxide Nanostructures For Sensing And Energy Harvesting, Phani Kiran Vabbina Jul 2016

Sonochemical Synthesis Of Zinc Oxide Nanostructures For Sensing And Energy Harvesting, Phani Kiran Vabbina

FIU Electronic Theses and Dissertations

Semiconductor nanostructures have attracted considerable research interest due to their unique physical and chemical properties at nanoscale which open new frontiers for applications in electronics and sensing. Zinc oxide nanostructures with a wide range of applications, especially in optoelectronic devices and bio sensing, have been the focus of research over the past few decades. However ZnO nanostructures have failed to penetrate the market as they were expected to, a few years ago. The two main reasons widely recognized as bottleneck for ZnO nanostructures are (1) Synthesis technique which is fast, economical, and environmentally benign which would allow the growth on …


Advanced Graphene Microelectronic Devices, Chowdhury G. Al-Amin Mar 2016

Advanced Graphene Microelectronic Devices, Chowdhury G. Al-Amin

FIU Electronic Theses and Dissertations

The outstanding electrical and material properties of Graphene have made it a promising material for several fields of analog applications, though its zero bandgap precludes its application in digital and logic devices. With its remarkably high electron mobility at room temperature, Graphene also has strong potential for terahertz (THz) plasmonic devices. However there still are challenges to be solved to realize Graphene’s full potential for practical applications.

In this dissertation, we investigate solutions for some of these challenges. First, to reduce the access resistances which significantly reduces the radio frequency (RF) performance of Graphene field effect transistors (GFETs), a novel …