Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Engineering

Modeling, Simulation, And Characterization Of Space Debris In Low-Earth Orbit, Paul D. Mccall Nov 2013

Modeling, Simulation, And Characterization Of Space Debris In Low-Earth Orbit, Paul D. Mccall

FIU Electronic Theses and Dissertations

Every space launch increases the overall amount of space debris. Satellites have limited awareness of nearby objects that might pose a collision hazard. Astrometric, radiometric, and thermal models for the study of space debris in low-Earth orbit have been developed. This modeled approach proposes analysis methods that provide increased Local Area Awareness for satellites in low-Earth and geostationary orbit. Local Area Awareness is defined as the ability to detect, characterize, and extract useful information regarding resident space objects as they move through the space environment surrounding a spacecraft.

The study of space debris is of critical importance to all space-faring …


A Novel Signal Processing Method For Intraoperative Neurophysiological Monitoring In Spinal Surgeries, Krishnatej Vedala Nov 2013

A Novel Signal Processing Method For Intraoperative Neurophysiological Monitoring In Spinal Surgeries, Krishnatej Vedala

FIU Electronic Theses and Dissertations

Intraoperative neurophysiologic monitoring is an integral part of spinal surgeries and involves the recording of somatosensory evoked potentials (SSEP). However, clinical application of IONM still requires anywhere between 200 to 2000 trials to obtain an SSEP signal, which is excessive and introduces a significant delay during surgery to detect a possible neurological damage. The aim of this study is to develop a means to obtain the SSEP using a much less, twelve number of recordings. The preliminary step involved was to distinguish the SSEP with the ongoing brain activity. We first establish that the brain activity is indeed quasi-stationary whereas …


Network Construction And Graph Theoretical Analysis Of Functional Language Networks In Pediatric Epilepsy, Anas Salah Eddin Nov 2013

Network Construction And Graph Theoretical Analysis Of Functional Language Networks In Pediatric Epilepsy, Anas Salah Eddin

FIU Electronic Theses and Dissertations

This dissertation introduces a new approach for assessing the effects of pediatric epilepsy on the language connectome. Two novel data-driven network construction approaches are presented. These methods rely on connecting different brain regions using either extent or intensity of language related activations as identified by independent component analysis of fMRI data. An auditory description decision task (ADDT) paradigm was used to activate the language network for 29 patients and 30 controls recruited from three major pediatric hospitals. Empirical evaluations illustrated that pediatric epilepsy can cause, or is associated with, a network efficiency reduction. Patients showed a propensity to inefficiently employ …


Novel Online Data Cleaning Protocols For Data Streams In Trajectory, Wireless Sensor Networks, Sitthapon Pumpichet Nov 2013

Novel Online Data Cleaning Protocols For Data Streams In Trajectory, Wireless Sensor Networks, Sitthapon Pumpichet

FIU Electronic Theses and Dissertations

The promise of Wireless Sensor Networks (WSNs) is the autonomous collaboration of a collection of sensors to accomplish some specific goals which a single sensor cannot offer. Basically, sensor networking serves a range of applications by providing the raw data as fundamentals for further analyses and actions. The imprecision of the collected data could tremendously mislead the decision-making process of sensor-based applications, resulting in an ineffectiveness or failure of the application objectives. Due to inherent WSN characteristics normally spoiling the raw sensor readings, many research efforts attempt to improve the accuracy of the corrupted or “dirty” sensor data. The dirty …


Trajectory Privacy Preservation In Mobile Wireless Sensor Networks, Xinyu Jin Oct 2013

Trajectory Privacy Preservation In Mobile Wireless Sensor Networks, Xinyu Jin

FIU Electronic Theses and Dissertations

In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". …


Bionano Electronics: Magneto-Electric Nanoparticles For Drug Delivery, Brain Stimulation And Imaging Applications, Rakesh Guduru Sep 2013

Bionano Electronics: Magneto-Electric Nanoparticles For Drug Delivery, Brain Stimulation And Imaging Applications, Rakesh Guduru

FIU Electronic Theses and Dissertations

Nanoparticles are often considered as efficient drug delivery vehicles for precisely dispensing the therapeutic payloads specifically to the diseased sites in the patient’s body, thereby minimizing the toxic side effects of the payloads on the healthy tissue. However, the fundamental physics that underlies the nanoparticles’ intrinsic interaction with the surrounding cells is inadequately elucidated. The ability of the nanoparticles to precisely control the release of its payloads externally (on-demand) without depending on the physiological conditions of the target sites has the potential to enable patient- and disease-specific nanomedicine, also known as Personalized NanoMedicine (PNM). In this dissertation, magneto-electric nanoparticles (MENs) …


Fabrication Of Dense Non-Circular Nanomagnetic Device Arrays Using Self-Limiting Low-Energy Glow-Discharge Processing, Zhen Zheng, Long Chang, Ivan Nekrashevich, Paul Ruchhoeft, Sakhrat Khizroev, Dmitri Litvinov Aug 2013

Fabrication Of Dense Non-Circular Nanomagnetic Device Arrays Using Self-Limiting Low-Energy Glow-Discharge Processing, Zhen Zheng, Long Chang, Ivan Nekrashevich, Paul Ruchhoeft, Sakhrat Khizroev, Dmitri Litvinov

Electrical and Computer Engineering Faculty Publications

We describe a low-energy glow-discharge process using reactive ion etching system that enables non-circular device patterns, such as squares or hexagons, to be formed from a precursor array of uniform circular openings in polymethyl methacrylate, PMMA, defined by electron beam lithography. This technique is of a particular interest for bit-patterned magnetic recording medium fabrication, where close packed square magnetic bits may improve its recording performance. The process and results of generating close packed square patterns by self-limiting low-energy glow-discharge are investigated. Dense magnetic arrays formed by electrochemical deposition of nickel over self-limiting formed molds are demonstrated.


Site Specifc Growth Of Metal Catalyzed Silica Nanowires For Biological And Chemical Sensing, Eric G. Huey Jul 2013

Site Specifc Growth Of Metal Catalyzed Silica Nanowires For Biological And Chemical Sensing, Eric G. Huey

FIU Electronic Theses and Dissertations

In this research the integration of nanostructures and micro-scale devices was investigated using silica nanowires to develop a simple yet robust nanomanufacturing technique for improving the detection parameters of chemical and biological sensors. This has been achieved with the use of a dielectric barrier layer, to restrict nanowire growth to site-specific locations which has removed the need for post growth processing, by making it possible to place nanostructures on pre-pattern substrates. Nanowires were synthesized using the Vapor-Liquid-Solid growth method. Process parameters (temperature and time) and manufacturing aspects (structural integrity and biocompatibility) were investigated.

Silica nanowires were observed experimentally to determine …


Dynamic Image Precompensation For Improving Visual Performance Of Computer Users With Ocular Aberrations, Jian Huang Jun 2013

Dynamic Image Precompensation For Improving Visual Performance Of Computer Users With Ocular Aberrations, Jian Huang

FIU Electronic Theses and Dissertations

With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers.

In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract …


Through Wafer 3d Vertical Micro-Coaxial Probe For High Frequency Material Characterization And Millimeter Wave Packaging Systems, Justin Boone May 2013

Through Wafer 3d Vertical Micro-Coaxial Probe For High Frequency Material Characterization And Millimeter Wave Packaging Systems, Justin Boone

FIU Electronic Theses and Dissertations

This work presents the development of an in-plane vertical micro-coaxial probe using bulk micromachining technique for high frequency material characterization. The coaxial probe was fabricated in a silicon substrate by standard photolithography and a deep reactive ion etching (DRIE) technique. The through-hole structure in the form of a coaxial probe was etched and metalized with a diluted silver paste. A co-planar waveguide configuration was integrated with the design to characterize the probe. The electrical and RF characteristics of the coaxial probe were determined by simulating the probe design in Ansoft’s High Frequency Structure Simulator (HFSS). The reflection coefficient and transducer …


Electrochemical Immunosensing Of Cortisol In An Automated Microfluidic System Towards Point-Of-Care Applications, Abhay Vasudev May 2013

Electrochemical Immunosensing Of Cortisol In An Automated Microfluidic System Towards Point-Of-Care Applications, Abhay Vasudev

FIU Electronic Theses and Dissertations

This dissertation describes the development of a label-free, electrochemical immunosensing platform integrated into a low-cost microfluidic system for the sensitive, selective and accurate detection of cortisol, a steroid hormone co-related with many physiological disorders. Abnormal levels of cortisol is indicative of conditions such as Cushing’s syndrome, Addison’s disease, adrenal insufficiencies and more recently post-traumatic stress disorder (PTSD). Electrochemical detection of immuno-complex formation is utilized for the sensitive detection of Cortisol using Anti-Cortisol antibodies immobilized on sensing electrodes. Electrochemical detection techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) have been utilized for the characterization and sensing of the …


Structural Data Acquisition Using Sensor Network, Sainath Chidambar Munavalli Apr 2013

Structural Data Acquisition Using Sensor Network, Sainath Chidambar Munavalli

FIU Electronic Theses and Dissertations

The development cost of any civil infrastructure is very high; during its life span, the civil structure undergoes a lot of physical loads and environmental effects which damage the structure. Failing to identify this damage at an early stage may result in severe property loss and may become a potential threat to people and the environment. Thus, there is a need to develop effective damage detection techniques to ensure the safety and integrity of the structure. One of the Structural Health Monitoring methods to evaluate a structure is by using statistical analysis. In this study, a civil structure measuring 8 …


Leakage Temperature Dependency Aware Real-Time Scheduling For Power And Thermal Optimization, Vivek Chaturvedi Mar 2013

Leakage Temperature Dependency Aware Real-Time Scheduling For Power And Thermal Optimization, Vivek Chaturvedi

FIU Electronic Theses and Dissertations

Catering to society’s demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become …


Wireless Sensor Network Deployment, Yipeng Qu Mar 2013

Wireless Sensor Network Deployment, Yipeng Qu

FIU Electronic Theses and Dissertations

Wireless Sensor Networks (WSNs) are widely used for various civilian and military applications, and thus have attracted significant interest in recent years. This work investigates the important problem of optimal deployment of WSNs in terms of coverage and energy consumption. Five deployment algorithms are developed for maximal sensing range and minimal energy consumption in order to provide optimal sensing coverage and maximum lifetime. Also, all developed algorithms include self-healing capabilities in order to restore the operation of WSNs after a number of nodes have become inoperative.

Two centralized optimization algorithms are developed, one based on Genetic Algorithms (GAs) and one …


Optimization Of Wireless Power Transfer Via Magnetic Resonance In Different Media, Olutola Jonah Mar 2013

Optimization Of Wireless Power Transfer Via Magnetic Resonance In Different Media, Olutola Jonah

FIU Electronic Theses and Dissertations

A wide range of non-destructive testing (NDT) methods for the monitoring the health of concrete structure has been studied for several years. The recent rapid evolution of wireless sensor network (WSN) technologies has resulted in the development of sensing elements that can be embedded in concrete, to monitor the health of infrastructure, collect and report valuable related data. The monitoring system can potentially decrease the high installation time and reduce maintenance cost associated with wired monitoring systems. The monitoring sensors need to operate for a long period of time, but sensors batteries have a finite life span. Hence, novel wireless …


Structural Health Monitoring Inside Concrete And Grout Using The Wireless Identification And Sensing Platform (Wisp), Elicek Delgado Cepero Mar 2013

Structural Health Monitoring Inside Concrete And Grout Using The Wireless Identification And Sensing Platform (Wisp), Elicek Delgado Cepero

FIU Electronic Theses and Dissertations

This research investigates the implementation of battery-less RFID sensing platforms inside lossy media, such as, concrete and grout. Both concrete and novel grouts can be used for nuclear plant decommissioning as part of the U.S. Department of Energy’s (DOE’s) cleanup projects. Our research examines the following: (1) material characterization, (2) analytical modeling of transmission and propagation losses inside lossy media, (3) maximum operational range of RFID wireless sensors embedded inside concrete and grout, and (4) best positioning of antennas for achieving longer communication range between RFID antennas and wireless sensors. Our research uses the battery-less Wireless Identification and Sensing Platform …


Hybrid Power System Intelligent Operation And Protection Involving Distributed Architectures And Pulsed Loads, Ahmed A. Mohamed Mar 2013

Hybrid Power System Intelligent Operation And Protection Involving Distributed Architectures And Pulsed Loads, Ahmed A. Mohamed

FIU Electronic Theses and Dissertations

Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system.

To achieve the …