Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Cleveland State University

2009

Automatic control

Articles 1 - 3 of 3

Full-Text Articles in Engineering

On Active Disturbance Rejection Control;Stability Analysis And Applications In Disturbance Decoupling Control, Qing Zheng Jan 2009

On Active Disturbance Rejection Control;Stability Analysis And Applications In Disturbance Decoupling Control, Qing Zheng

ETD Archive

One main contribution of this dissertation is to analyze the stability characteristics of extended state observer (ESO) and active disturbance rejection control (ADRC). In particular, asymptotic stability of the dynamic system that describes the estimation error and the closed-loop system is established where the plant dynamics is completely known. In the face of large dynamic uncertainties, the estimation error, the closed-loop tracking error, and its up to the (n-1)st order derivatives are shown to be bounded. Furthermore, it is demonstrated that the error upper bounds, in general, monotonously decrease with the observer and control loop bandwidths. The second contribution is …


Robotics Control Using Active Disturbance Rejection Control, Ousama Said Khairallah Jan 2009

Robotics Control Using Active Disturbance Rejection Control, Ousama Said Khairallah

ETD Archive

Conventional robotics control has been set in stone since the sixties. The world has been waiting too long for a new age of control to change the world of Robotics. Active Disturbance Rejection Control (ADRC) is a newly reformed Control methodology. It has been used, in very limited applications, as a replacement for PID control. In this thesis, I will cover the different aspects of the kinematics and dynamics of a robotic manipulator. I will also examine the feasibility of using ADRC to control a robotic manipulator. To explain ADRC, a simple example that demonstrates the concepts and theory of …


Load Frequency Control Of Multiple-Area Power Systems, Yao Zhang Jan 2009

Load Frequency Control Of Multiple-Area Power Systems, Yao Zhang

ETD Archive

In an interconnected power system, as a power load demand varies randomly, both area frequency and tie-line power interchange also vary. The objectives of load frequency control (LFC) are to minimize the transient deviations in theses variables (area frequency and tie-line power interchange) and to ensure their steady state errors to be zeros. When dealing with the LFC problem of power systems, unexpected external disturbances, parameter uncertainties and the model uncertainties of the power system pose big challenges for controller design. Active disturbance rejection control (ADRC), as an increasingly popular practical control technique, has the advantages of requiring little information …