Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Air Force Institute of Technology

Infrared

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Detection And Identification Of Covert Devices Using Infrared And Stacked Optics Detection, Michael A. Reyneke Mar 2023

Detection And Identification Of Covert Devices Using Infrared And Stacked Optics Detection, Michael A. Reyneke

Theses and Dissertations

This work investigates stacked optics detection methodologies to successfully detect and identify observational systems with a cyber-physical sensing tool, ODIN (Observational Device Identification Network). ODIN successfully detected the presence of stacked optics and LiDAR systems using night-vision devices with a 96.32% average accuracy rating, both overt and covertly placed, with objective lens diameters ranging from 17 mm to 50 mm at distances between 1 m to 5 m with and without commonly employed anti-reflective countermeasures. ODIN provides a foundation for counter- measure capabilities of NIR devices and stacked optical systems in stationary environments. Additionally, a pilot study on smartphone LiDAR …


A Focal Plane Array And Electronics Model For Cmos And Ccd Sensors In The Afit Sensor And Scene Emulation Tool (Asset), Fernando D. Fernandez Mar 2019

A Focal Plane Array And Electronics Model For Cmos And Ccd Sensors In The Afit Sensor And Scene Emulation Tool (Asset), Fernando D. Fernandez

Theses and Dissertations

Electro-optical and infrared (EO/IR) sensor models are useful tools that can facilitate understanding a system's behavior without expensive and time-consuming testing of an actual system. EO/IR models are especially important to the military industry where truth data is required but is sometimes impractical to obtain through experimentation due to expense or difficulties in procuring hardware. This work describes implementation of a focal plane array (FPA) model of charge-coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) photodetectors as a component in the Air Force Institute of Technology (AFIT) Sensor and Scene Emulation Tool (ASSET). The FPA model covers conversion of photo-generated …


Plasmonic Grating Geometrics And Wavelength-Dependent Focus Depth In Infrared Detectors, Patrick R. Kennedy Mar 2018

Plasmonic Grating Geometrics And Wavelength-Dependent Focus Depth In Infrared Detectors, Patrick R. Kennedy

Theses and Dissertations

The objective for this research is to determine a relationship between plasmonic grating geometries and the wavelength-dependent focus depth. This research is focused on enhancing the signal collected by infrared detectors by using a metal grating as a planar lens to focus light in the detecting region of the substrate. This can be used to maintain a thinner absorbing region and possibly to create multi-color imaging in a single pixel. Simulations demonstrate that the plasmonic lens is capable of creating a wavelength dependent focus spot.