Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

PDF

Solar cells

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 63

Full-Text Articles in Engineering

Analysis Of Degradation Of Sb2se3 Thin Film Solar Cells Deploying A Time-Dependent Approach Linked With 1d-Amps Simulation, Ming-Lang Tseng, Malek Gassoumi, Nima Ghadiri Jan 2023

Analysis Of Degradation Of Sb2se3 Thin Film Solar Cells Deploying A Time-Dependent Approach Linked With 1d-Amps Simulation, Ming-Lang Tseng, Malek Gassoumi, Nima Ghadiri

Articles

In this paper, we have developed a time-dependent model to study defect growth in the absorber layer of Sb2Se3 thin film solar cells. This model has been integrated with the AMPS-1D simulation platform to investigate the impact of increasing defect density at different positions within the Sb2Se3 layer on the electrical parameters of the solar cell. We adopted the Gloeckler standard model for thin films in AMPS to represent Sb2Se3 materials. The study focuses on tracking the degradation of device performance parameters as donor-like mid-gap states accumulate in the Sb2Se3 layer over time. We monitored the variation of key electrical …


Enhancing Thermal Stability Of Perovskite Solar Cells With A Polymer Through Grain Boundary Passivation, Tanzila Tasnim Ava Jul 2021

Enhancing Thermal Stability Of Perovskite Solar Cells With A Polymer Through Grain Boundary Passivation, Tanzila Tasnim Ava

Electrical & Computer Engineering Theses & Dissertations

Organic-inorganic halide perovskite solar cells have emerged as a promising photovoltaic technology due to their superb power conversion efficiency (PCE) and very low material costs. While perovskite solar cells are expected to eventually compete with existing silicon-based solar cells on the market, their long-term stability has become a major bottleneck. In particular, perovskite films are found to be very sensitive to external factors such as air, UV light, light soaking, thermal stress and others. Among these stressors, light, oxygen and moisture-induced degradation can be slowed by integrating barrier or interface layers within the device architecture. However, the most representative perovskite …


A Photoanode With Hierarchical Nanoforest Tio 2 Structure And Silver Plasmonic Nanoparticles For Flexible Dye Sensitized Solar Cell, Brishty Deb Choudhury, Chen Lin, Sk Md Ali Zaker Shawon, Javier Soliz-Martinez, Hasina Huq, Mohammed Jasim Uddin Apr 2021

A Photoanode With Hierarchical Nanoforest Tio 2 Structure And Silver Plasmonic Nanoparticles For Flexible Dye Sensitized Solar Cell, Brishty Deb Choudhury, Chen Lin, Sk Md Ali Zaker Shawon, Javier Soliz-Martinez, Hasina Huq, Mohammed Jasim Uddin

Electrical and Computer Engineering Faculty Publications and Presentations

Due to unique photovoltaic properties, the nanostructured morphologies of TiO2 on flexible substrate have been studied extensively in the recent years for applications in dye sensitized solar cells (DSSCs). Microstructured electrode materials with high surface area can facilitate rapid charge transport and thus improve the light-to-current conversion efficiency. Herein we present an improved photoanode with forest like photoactive TiO2 hierarchical microstructure using a simple and facile hydrothermal route. To utilize the surface plasmon resonance (SPR) and hence increase the photon conversion efficiency, a plasmonic nanoparticle Ag has also been deposited using a very feasible photoreduction method. The branched structure of …


Highly Transmissive Scalable Colored Coatings For Architectural Photovoltaic Panels, Akbar Ali Syed Apr 2020

Highly Transmissive Scalable Colored Coatings For Architectural Photovoltaic Panels, Akbar Ali Syed

Electrical & Computer Engineering Theses & Dissertations

Highly transmissive coatings were developed by fabricating thin films using SiO2 and SiO2/TiO2 core/shell nanoparticles on glass substrates and on the photovoltaic cell glass covers. This coating is to maintain an attractive color appearance of the exterior surface for architecturally integrated photovoltaics and can be coated on fabricated photovoltaic panels. The color and optical properties of the nanoparticle coating was investigated for different nanoparticle diameters of 200-400 nm for SiO2 nanoparticles and core/shell nanoparticles having SiO2/TiO2 structure with 300 ± 11 nm diameter, and SiO2/TiO2/SiO2 structure with …


Photovoltage Enhancement For Stable Perovskite Solar Cells With A Temperature-Controlled Grain Growth Technique, Luis Eduardo Valerio Jan 2020

Photovoltage Enhancement For Stable Perovskite Solar Cells With A Temperature-Controlled Grain Growth Technique, Luis Eduardo Valerio

Open Access Theses & Dissertations

By performing strong characterizations methods, one can begin to fully understand the chemistry and composition behind a great performing perovskite solar cell. Understanding how the interaction between layers inside a solar cell is driven by the temperature and overall environment is a key element to improve the fabrication process and overall efficiency of such cells. This Thesis will present a study of the hybrid organic-inorganic, mixed-cation, mixed-halide, temperature and thickness-controlled perovskite solar cell. A constant power conversion efficiency (PCE) ranging between 15-17% and an open circuit voltage V¬oc above 1.05 V for a wide-band gap perovskite cell is presented.


Carbon-Based Interlayers In Perovskite Solar Cells, Aleksandr P. Litvin, Xiaoyu Zhang, Kevin Berwick, Anatoly V. Fedorov, Weitao Zheng, Alexander V. Baranov Jan 2020

Carbon-Based Interlayers In Perovskite Solar Cells, Aleksandr P. Litvin, Xiaoyu Zhang, Kevin Berwick, Anatoly V. Fedorov, Weitao Zheng, Alexander V. Baranov

Articles

Perovskites are solution-processed, high-performance semiconductors of interest in low-cost photovoltaics. The interfaces between the perovskite photoactive layers and the top and bottom contacts are crucial for efficient charge transport and minimizing trapping. Control of the collection of charge carriers at these interfaces is decisive to device performance. Here, we review recent progress in the realization of efficient perovskite solar cells using cheap, easily processed, stable, carbon-based interlayers. Interface materials including graphene, carbon nanotubes, fullerenes, graphene quantum dots and carbon dots are introduced and their influence on device performance is discussed.


Degradation Mechanism Due To Water Ingress Effect On The Top Contact Of Cu(In,Ga)Se2 Solar Cells, Deewakar Poudel, Shankar Karki, Benjamin Belfore, Grace Rajan, Sushma Swaraj Atluri, Sina Soltanmohammad, Angus Rockett, Sylvain Marsillac Jan 2020

Degradation Mechanism Due To Water Ingress Effect On The Top Contact Of Cu(In,Ga)Se2 Solar Cells, Deewakar Poudel, Shankar Karki, Benjamin Belfore, Grace Rajan, Sushma Swaraj Atluri, Sina Soltanmohammad, Angus Rockett, Sylvain Marsillac

Electrical & Computer Engineering Faculty Publications

The impact of moisture ingress on the surface of copper indium gallium diselenide (CIGS) solar cells was studied. While industry-scale modules are encapsulated in specialized polymers and glass, over time, the glass can break and the encapsulant can degrade. During such conditions, water can potentially degrade the interior layers and decrease performance. The first layer the water will come in contact with is the transparent conductive oxide (TCO) layer. To simulate the impact of this moisture ingress, complete devices were immersed in deionized water. To identify the potential sources of degradation, a common window layer for CIGS devices—a bilayer of …


Nanostructured Device Designs For Enhanced Performance In Cds/Cu2S Heterojunction Solar Cells, Benjamin Wells Jan 2020

Nanostructured Device Designs For Enhanced Performance In Cds/Cu2S Heterojunction Solar Cells, Benjamin Wells

Theses and Dissertations--Electrical and Computer Engineering

Nanostructured CdS/Cu2S devices have been simulated using SCAPS-1D to demonstrate enhanced performance over traditional planar device structures. Two designs were examined: a nanowire CdS/planar Cu2S device and a nanowire CdS/nanowire Cu2S device. The addition of nanowires to a device had been previously demonstrated to improve device performance in a nanowire CdS/planar CdTe device by decreasing the amount of light absorbed by the CdS window layer, thus allowing more light to reach the absorber layer. Additionally, the total number of interface states can be greatly reduced due to the decreased total surface area between the window and absorber layers. The nanowire …


Triple-Junction Solar Cells : In Parallel., Levi C Mays Aug 2019

Triple-Junction Solar Cells : In Parallel., Levi C Mays

Electronic Theses and Dissertations

This paper looks into the current inefficiency of solar cells and attempts a few alternative solar cell structures in order to provide a more effective source of renewable energy. Currently, multi-junction solar cells are being developed to capture the sun’s light more efficiently. One of the ideas in this paper is to add a window to see if the addition of such a layer into a junction will increase the voltage while maintaining nearly the same current output. Central to this paper is the rearranging of the conducting layers of the multi-junction cell so that the junctions can be connected …


Optimization Of Top Contact For Cu(In,Ga)Se2 Solar Cells, Grace Cherukara Rajan Jul 2018

Optimization Of Top Contact For Cu(In,Ga)Se2 Solar Cells, Grace Cherukara Rajan

Electrical & Computer Engineering Theses & Dissertations

As world energy demands continue to increase, the need to generate electricity from a broader variety of sources, including renewables, is more critical than ever. With costs still 30% higher than those of natural gas, solar energy is a viable contender, but more progress is needed to level the playing field with other forms of energy generation. The overall energy security can be enhanced by diversifying the energy supply. Among them, Cu(In,Ga)Se2 (CIGS) has gained significant momentum as a possible high efficiency and low cost thin film solar cell material. The capacity to scale up any photovoltaic technology is …


Synthesis, Processing, And Fundamental Phase Formation Study Of Czts Films For Solar Cell Applications, Osama Awadallah Apr 2018

Synthesis, Processing, And Fundamental Phase Formation Study Of Czts Films For Solar Cell Applications, Osama Awadallah

FIU Electronic Theses and Dissertations

Copper zinc tin sulfide (Cu2ZnSnS4 or CZTS) kesterite compound has attracted much attention in the last years as a new abundant, low cost, and environmentally benign material with desirable optoelectronic properties for Photovoltaic (PV) thin film solar cell applications. Among various synthesis routes for CZTS thin films, sol-gel processing is one of the most attractive routes to obtain CZTS films with superior quality and low cost.

In this study, sol-gel sulfurization process parameters for CZTS thin films were systematically investigated to identify the proper process window. In addition, temperature dependent Raman spectroscopy was employed to monitor the …


Bandgap Profiling In Cigs Solar Cells Via Valence Electron Energy-Loss Spectroscopy, Julia I. Deitz, Shankar Karki, Sylvain X. Marsillac, Tyler J. Grassman Mar 2018

Bandgap Profiling In Cigs Solar Cells Via Valence Electron Energy-Loss Spectroscopy, Julia I. Deitz, Shankar Karki, Sylvain X. Marsillac, Tyler J. Grassman

Electrical & Computer Engineering Faculty Publications

A robust, reproducible method for the extraction of relative bandgap trends from scanning transmission electron microscopy (STEM) based electron energy-loss spectroscopy (EELS) is described. The effectiveness of the approach is demonstrated by profiling the bandgap through a CuIn1-xGaxSe2 solar cell that possesses intentional Ga/(In + Ga) composition variation. The EELS-determined bandgap profile is compared to the nominal profile calculated from compositional data collected via STEM-based energy dispersive X-ray spectroscopy. The EELS based profile is found to closely track the calculated bandgap trends, with only a small, fixed offset difference. This method, which is particularly advantageous …


Study Of Modified Deposition Process For Cu(In,Ga)Se2 Solar Cell Back Contact, Tasnuva Ashrafee Oct 2017

Study Of Modified Deposition Process For Cu(In,Ga)Se2 Solar Cell Back Contact, Tasnuva Ashrafee

Electrical & Computer Engineering Theses & Dissertations

As the worldwide demand for renewable energy is increasing, growth of the global share of alternative energy sources would improve overall energy security as well as bring environmental benefits. So far, solar cells - the devices that convert direct sunlight into electricity - are dominated by silicon devices. Another alternative is thin film solar cell, whose main inspiration is to reduce the electricity production cost. Cu(In, Ga)Se2 (CIGS) solar cells are considered to have a great prospective because of reduced material and energy consumption during manufacturing. Many CIGS solar cell manufacturers are already exhibiting GW-scale production capacity. With the …


Diffusion Modeling Of Impurities Through The Molybdenum Back Contact Of Cigs Solar Cells, Chinedum John Akwari Oct 2017

Diffusion Modeling Of Impurities Through The Molybdenum Back Contact Of Cigs Solar Cells, Chinedum John Akwari

Electrical & Computer Engineering Theses & Dissertations

CIGS is a major technology in photovoltaics and depends heavily, as any other PV technology, on the capacity to achieve the highest efficiency possible to compete on the market. Alkaline elements, notably sodium and potassium, play a key role in this matter as they enhance the open circuit voltage and the fill factor of the CIGS solar cells. However, this effect exists only for very specific concentration of sodium and potassium. These impurities typically diffuse through the soda-lime glass substrate.

Via modeling of the SIMS data, we try to understand and predict the diffusion mechanisms of these impurities from the …


Carbon Removal And Optoelectronic Property Tuning In Copper Arsenic Sulfide Thin Films Through Ligand Exchange And Alloying, Louis R. Schroeder, Scott Mcclary, Rakesh Agrawal Aug 2017

Carbon Removal And Optoelectronic Property Tuning In Copper Arsenic Sulfide Thin Films Through Ligand Exchange And Alloying, Louis R. Schroeder, Scott Mcclary, Rakesh Agrawal

The Summer Undergraduate Research Fellowship (SURF) Symposium

Solution processed thin film solar cells are attractive alternatives to conventional energy sources due to low waste generation, flexibility in substrate choice, and scalability. The novel semiconductor Cu3AsS4 in the enargite phase has a near ideal band gap of 1.4 eV and has earth abundant constituent elements; yet single-junction solar cells have yielded low efficiencies due to a secondary carbonaceous phase present, among other issues. This carbonaceous phase may be eliminated by exchanging the carbonaceous ligands with molecular metal chalcogenides. To characterize the ligand exchanged particles, UV-Vis-NIR spectroscopy, Raman spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and …


Modification Of Deposition Process Parameters For Uniform Indium Layer Deposition, Isaac Butt Apr 2017

Modification Of Deposition Process Parameters For Uniform Indium Layer Deposition, Isaac Butt

Electrical & Computer Engineering Theses & Dissertations

The need for more efficient light to energy converting cells has long been a subject of research and development. With abundant availability of solar energy that the earth receives, the photovoltaic industry has sought materials that could serve the purpose of great energy conversion. The photovoltaic industry is mainly dominated by Silicon owing to its abundant availability, reliability and economic cost. However, due to limitations on efficiency improvements, some focus has shifted toward III-V based solar cells with a great potential for attaining higher efficiency and multi-junction applications. However, the cost of the III-V materials is extremely high due to …


Microwave Instrumentation And Sensing Techniques For Quantum Efficiency And Minority-Carrier Lifetime Measurements, Kyle Benjamin Lu Mar 2017

Microwave Instrumentation And Sensing Techniques For Quantum Efficiency And Minority-Carrier Lifetime Measurements, Kyle Benjamin Lu

Dissertations and Theses

A non-contact method characterizing the quantum efficiency of a solar cell using the microwave reflectance signature is presented in this thesis. Traditional solar cell quantum efficiency (QE) measurements are only possible near the completion of the fabrication process using contacts in direct physical connection with the metalized surface tabs to probe and extract charge carriers from the device. However, pressure within the solar metrology industry to report the spectral performance of the device earlier in the manufacturing process as part of the process control loop requires that a new non-contact method be developed. This thesis work contributes the development of …


Low Cost And Durable Perovskite Solar Cells, Jack Carli, Kapil Marahatta, Feras Kakish, Jason Mcaleese Jan 2017

Low Cost And Durable Perovskite Solar Cells, Jack Carli, Kapil Marahatta, Feras Kakish, Jason Mcaleese

Capstone Design Expo Posters

Perovskite solar cells offer an alternative approach to photovoltaic solar power generation versus traditional silicon solar cells, by rivaling their efficiency at potentially less than half the cost. Perovskite’s name comes from the crystal structure that encompasses the active layer (Methylammonium Lead Iodide – CH3NH3PbI3), the region that absorbs photons and generates electrical energy by creating electron hole pairs. The presence of the organic cation (methylammonium) causes degradation of the active layer under humidity, UV light, and high temperature, which lowers the effectiveness of the cells. This project investigates low-cost routes and materials for …


Configuration And Electronic Properties Of The Interface Between Lead Iodide Hybrid Perovskite And Self-Assembled Monolayers In Solar Cells, Parin Divya Amlani Jan 2017

Configuration And Electronic Properties Of The Interface Between Lead Iodide Hybrid Perovskite And Self-Assembled Monolayers In Solar Cells, Parin Divya Amlani

Browse all Theses and Dissertations

Hybrid perovskite photovoltaic materials are currently the most promising functional materials for solar cell applications with efficiency reaching to those of more conventional materials such as silicon. Using self-assembled monolayers between photovoltaic materials and electrodes is a method for improving the stability and functionality. Recent experiments have shown that using 4-mercaptobenzoic acid and pentafluorobenzenethiol monolayers bridging lead iodide hybrid perovskite photovoltaic materials and electrodes result in improved stability and efficiency. The details of monolayer assembly, molecular adsorption configuration, and resulting modification of electronic properties are important characteristics related to solar cell performance. These characteristics can be obtained through accurate computer …


The Effects Of Phosphonic Acids In Dye-Sensitized Solar Cells, Keith Edward James May 2016

The Effects Of Phosphonic Acids In Dye-Sensitized Solar Cells, Keith Edward James

Dissertations and Theses

Novel methods for the construction of dye-sensitized solar cells (DSSCs) were developed. A thin dense underlayer of TiO2 was applied on fluorine-doped tin oxide (FTO) glass using as a precursor Tyzor AA-105. Subsequently a mesoporous film of P-25 TiO2 was applied by spreading a suspension uniformly over the surface of the underlayer and allowing the plate to slowly dry while resting on a level surface. After sintering at 500° C slides were treated with TCPP as a sensitizing dye and assembled into DSSCs. A novel method was used to seal the cells; strips of Parafilm® were used as …


Reflective Efficiencies Of Materials For Applications Of Bifacial Solar Cells, Michael Metter May 2016

Reflective Efficiencies Of Materials For Applications Of Bifacial Solar Cells, Michael Metter

Senior Theses

The bifacial solar cell is superior to its monofacial predecessor due to its ability to convert both incident light on top and reflected light from below into energy. The scattering of the reflected light is affected by the property of the material on which it is interacting. To date, little work has been contributed to studying the properties of these materials to determine optimal quantities for bifacial solar cells. In the first experiment, reflective efficiencies compared to the angle of reflection were explored for different grit of sandpaper in order to develop an understanding of how surface texture impacts reflectivity. …


Fully Solution Processed Pedot:Pss And Silver Nanowire Semi-Transparent Electrodes For Thin Film Solar Cells, Bjorn Vaagensmith Jan 2016

Fully Solution Processed Pedot:Pss And Silver Nanowire Semi-Transparent Electrodes For Thin Film Solar Cells, Bjorn Vaagensmith

Electronic Theses and Dissertations

Building integrated photovoltaics (BIPV), such as semitransparent organic solar cells (OSC) for power generating windows, is a promising method for implementing renewable energy under the looming threat of depleting fossil fuels. OSC require a solution processed transparent electrode to be cost effective; but typically employ a nonsolution processed indium tin oxide (ITO) transparent electrode. PEDOT:PSS and silver nanowire transparent electrodes have emerged as a promising alternative to ITO and are solution processed compatible. However, PEDOT:PSS requires a strong acid treatment, which is incompatible with high throughput solution processed fabrication techniques. Silver nanowires suffer from a short lifetime when subject to …


Synthesis And Characterization Of Kesterite Cu2znsns4 (Czts) Thin Films For Solar Cell Application, Mohamed M.A. Abusnina Jan 2016

Synthesis And Characterization Of Kesterite Cu2znsns4 (Czts) Thin Films For Solar Cell Application, Mohamed M.A. Abusnina

Electronic Theses and Dissertations

The quaternary compound Cu2ZnSnS4 (CZTS) gained considerable attention in the last decade due to its potential as an active-layer semiconductor for low-cost thin-film solar cells. The material is composed of nontoxic and Earth-abundant constituents, has optical properties suitable for photovoltaic application, and can be synthesized using a wide variety of methods.

Polycrystalline CZTS was grown in this work using vacuum-based deposition to first deposit metal films (precursors) of Cu, Zn, and Sn. In a subsequent step, the precursors underwent an annealing treatment in sulfur vapor environment (sulfurization) to form CZTS. Using sputtering, a physical vapor deposition (PVD) …


Nanowire Cds-Cdte Solar Cells With Molybdenum Oxide As Contact, Hongmei Dang, Vijay P. Singh Oct 2015

Nanowire Cds-Cdte Solar Cells With Molybdenum Oxide As Contact, Hongmei Dang, Vijay P. Singh

Electrical and Computer Engineering Faculty Publications

Using a 10 nm thick molybdenum oxide (MoO3-x) layer as a transparent and low barrier contact to p-CdTe, we demonstrate nanowire CdS-CdTe solar cells with a power conversion efficiency of 11% under front side illumination. Annealing the as-deposited MoO3 film in N2 resulted in a reduction of the cell's series resistance, from 9.97 Ω/cm2 to 7.69 Ω/cm2, and increase in efficiency from 9.9% to 11%. Under illumination from the back, the MoO3-x/Au side, the nanowire solar cells yielded Jsc of 21 mA/cm2 and efficiency of 8.67%. Our results demonstrate …


Top-Down Aluminum Induced Crystallization For Photovoltaics, Seth Daniel Shumate May 2015

Top-Down Aluminum Induced Crystallization For Photovoltaics, Seth Daniel Shumate

Graduate Theses and Dissertations

Passivating silicon solar cell surfaces is critical to fabricating very high efficiency and low cost photovoltaic devices. The sun-facing surface of the solar cell, known as the emitter, is particularly important when designing a solar cell. This work focused first on an alternative method of forming the emitter of silicon solar cells, and secondly on a method for improving the surface passivation of both these non-traditional and standard n-type solar cells.

Top-down aluminum induced crystallization (TAIC) was used for forming a polycrystalline silicon layer from amorphous silicon using aluminum to catalyze the crystallization at much lower temperatures than otherwise possible. …


Defect Levels In Cu₂Znsn(Sₓse₁₋ₓ)₄ Solar Cells Probed By Current-Mode Deep Level Transient Spectroscopy, S. Das, S. K. Chaudhuri, R. N. Bhattacharya, K. C. Mandal Apr 2015

Defect Levels In Cu₂Znsn(Sₓse₁₋ₓ)₄ Solar Cells Probed By Current-Mode Deep Level Transient Spectroscopy, S. Das, S. K. Chaudhuri, R. N. Bhattacharya, K. C. Mandal

Krishna C. Mandal

No abstract provided.


Defect Levels In Cu₂Znsn(Sₓse₁₋ₓ)₄ Solar Cells Probed By Current-Mode Deep Level Transient Spectroscopy, S. Das, S. K. Chaudhuri, R. N. Bhattacharya, K. C. Mandal Apr 2015

Defect Levels In Cu₂Znsn(Sₓse₁₋ₓ)₄ Solar Cells Probed By Current-Mode Deep Level Transient Spectroscopy, S. Das, S. K. Chaudhuri, R. N. Bhattacharya, K. C. Mandal

Krishna C. Mandal

No abstract provided.


Low Cost Schottky Barrier Solar Cells Fabricated On Cdse And Sb2S3 Films Chemically Deposited With Silicotungstic Acid, O. Savadogo, K. C. Mandal Apr 2015

Low Cost Schottky Barrier Solar Cells Fabricated On Cdse And Sb2S3 Films Chemically Deposited With Silicotungstic Acid, O. Savadogo, K. C. Mandal

Krishna C. Mandal

No abstract provided.


Atmospheric Pressure Chemical Vapor Deposition Of Functional Oxide Materials For Crystalline Silicon Solar Cells, Kristopher Davis Jan 2015

Atmospheric Pressure Chemical Vapor Deposition Of Functional Oxide Materials For Crystalline Silicon Solar Cells, Kristopher Davis

Electronic Theses and Dissertations

Functional oxides are versatile materials that can simultaneously enable efficiency gains and cost reductions in crystalline silicon (c-Si) solar cells. In this work, the deposition of functional oxide materials using atmospheric pressure chemical vapor deposition (APCVD) and the integration of these materials into c-Si solar cells are explored. Specifically, thin oxide films and multi-layer film stacks are utilized for the following purposes: (1) to minimize front surface reflectance without increasing parasitic absorption within the anti-reflection coating(s); (2) to maximize internal back reflectance of rear passivated cells, thereby increasing optical absorption of weakly absorbed long wavelength photons (? > 900 nm); (3) …


Metal Assisted Nanowire Growth For Silicon Nanowire/Amorphous Silicon Composite Solar Cell, Asmaa Ali Sadoon Dec 2014

Metal Assisted Nanowire Growth For Silicon Nanowire/Amorphous Silicon Composite Solar Cell, Asmaa Ali Sadoon

Graduate Theses and Dissertations

Solar cells are photovoltaic devices that convert the energy of light to electricity by the photovoltaic effect. Crystalline silicon-based solar cells are the most dominant solar cells in the market today due to the high efficiency and relatively low cost. However, the cost of such solar cell is still high due to the large amount of material that is consumed in fabricating such a device. Polycrystalline/amorphous thin films and nanomaterial technologies have emerged to reduce the high cost of c-Si based solar cells and increase the efficiency. In this research, we combined these two technologies to propose and fabricate silicon …