Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

PDF

2002

Time Domain Analysis

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Transmission Line Modeling Of Vias In Differential Signals, Chen Wang, James L. Drewniak, Jun Fan, James L. Knighten, Norman W. Smith, Ray Alexander Aug 2002

Transmission Line Modeling Of Vias In Differential Signals, Chen Wang, James L. Drewniak, Jun Fan, James L. Knighten, Norman W. Smith, Ray Alexander

Electrical and Computer Engineering Faculty Research & Creative Works

Signal layer transitions in differential lines are modeled using both FDTD and equivalent circuit methods. The equivalent circuit is developed based on transmission-line reasoning regarding via behavior. Parameters of each transmission-line segment are obtained based on its corresponding physical geometry. The mixed-mode S-parameters from the equivalent circuit and the FDTD modeling are compared. Good agreement is demonstrated in the frequency range from 1 GHz to 20 GHz. The results indicate that vias in differential lines can be modeled as a transmission line for a quick and easy engineering estimation of the differential signal behavior in an environment of signal layer …


Anticipating Full Vehicle Radiated Emi From Module-Level Testing In Automobiles, Geping Liu, Chingchi Chen, Yuhua Tu, James L. Drewniak Aug 2002

Anticipating Full Vehicle Radiated Emi From Module-Level Testing In Automobiles, Geping Liu, Chingchi Chen, Yuhua Tu, James L. Drewniak

Electrical and Computer Engineering Faculty Research & Creative Works

EMI due to common-mode currents on cables routed in automobiles was studied using a test device designed to mimic a vehicle. Both experimental work and Finite-Difference Time-Domain (FDTD) modeling were employed in this paper. The good agreement between the measurements and modeling results indicates that the numerical tools can be a useful aid in predicting vehicle-level EMI by developing vehicle transfer functions and measuring the module-level EMI characteristics on the bench top.


Application Of Higher-Order Fem Elements To The Analysis Of Microstrip Structures, H. Wang, C. L. Guo, Todd H. Hubing, James L. Drewniak, Thomas Van Doren, Richard E. Dubroff Aug 2002

Application Of Higher-Order Fem Elements To The Analysis Of Microstrip Structures, H. Wang, C. L. Guo, Todd H. Hubing, James L. Drewniak, Thomas Van Doren, Richard E. Dubroff

Electrical and Computer Engineering Faculty Research & Creative Works

Microstrip structures, formed by metal traces printed on a dielectric substrate above a reference plane, are frequently the object of electromagnetic modeling. In this paper, hybrid FEM/MoM formulations employing conventional Whitney elements and newly developed linear-tangent/linear-normal (LT/LN) tangential vector finite elements (TVFEs) are applied to the analysis of microstrip structures with thin traces. This paper shows that the variation of the electric field below the trace is a significant issue to be addressed in microstrip structure modeling. Different mesh methods are investigated and the advantages of the LT/LN TVFEs are discussed.


Efficient Modeling Of Discontinuities And Dispersive Media In Printed Transmission Lines, R. Araneo, Chen Wang, Xiaoxiong Gu, James L. Drewniak, S. Celozzi Mar 2002

Efficient Modeling Of Discontinuities And Dispersive Media In Printed Transmission Lines, R. Araneo, Chen Wang, Xiaoxiong Gu, James L. Drewniak, S. Celozzi

Electrical and Computer Engineering Faculty Research & Creative Works

The finite-difference time-domain method is applied to the analysis of transmission lines on printed circuit boards. The lossy, dispersive behavior of the dielectric substrate is accurately accounted for by means of several algorithms whose accuracy is discussed and compared. Numerical results are validated by comparisons with measurements and an equivalent circuit of slot in the ground plane is proposed.