Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Engineering

Monitoring The Threat Of Sinkhole Formation Under A Portion Of Us 18 In Cerro Gordo County, Iowa Using Tdr Measurements, Kevin O'Connor, Matthew Trainum Oct 2015

Monitoring The Threat Of Sinkhole Formation Under A Portion Of Us 18 In Cerro Gordo County, Iowa Using Tdr Measurements, Kevin O'Connor, Matthew Trainum

Sinkhole Conference 2015

Sinkhole formation is a common occurrence in northeast Iowa, and U.S. 18 in Cerro Gordo County was constructed over an area where sinkhole formation had only been locally known. It had not been recorded or identified in the Iowa DNR database at the time. Since 2004, sinkholes have developed along the right of way. Geophysical surveys contributed very little in the identifying the cause. However a Soil Survey (drilling program) identified numerous voids within carbonate bedrock. The soil borings indicated that shale overlying the carbonate rock has been removed/eroded, and resulted in the development of a karst subsurface through the …


Vessel Tracking Using Automatic Identification System Data In The Arctic, Torkild Eriksen, Øystein Olsen Aug 2015

Vessel Tracking Using Automatic Identification System Data In The Arctic, Torkild Eriksen, Øystein Olsen

ShipArc 2015 Conference

No abstract provided.


The Future Of Rural Communities, Alondra B. Perez, Yanliang Zhang (Mentor) Aug 2015

The Future Of Rural Communities, Alondra B. Perez, Yanliang Zhang (Mentor)

Idaho Conference on Undergraduate Research

There is a problem in how modern energy is being distributed throughout the world; less than a quarter of the population have access to energy. Limited energy access is seen in rural areas because of the costs that comes from transporting material and making modern energy resources (solar panels, wind turbines, etc..). Through research on thermoelectric devices, there have been many theories tested in order to improve energy efficiency focusing on easy maneuverable resources. At Boise State’s Advanced Energy Lab, thermoelectric generators are being created and modified which can be used to help communities from rural areas power utilities needed …


Visualization And Analysis Of Sensory Data, Luke Neumann, Sung Yeon Choi, Brian Olsen, Sungahn Ko, David Ebert Dr. Aug 2015

Visualization And Analysis Of Sensory Data, Luke Neumann, Sung Yeon Choi, Brian Olsen, Sungahn Ko, David Ebert Dr.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Recently, California has suffered a severe drought, making water a scarce resource to its population. Many viticulturists are based in this area who rely on heavy irrigation to produce a better grape and a better wine. Not just in California, but throughout the nation, irrigation must be applied intelligently for efficient use of water and funding. By taking measurements of physical characteristics of a vineyard over time, one may be able to visualize trends in the data which lend itself to describing preferred growing methods. Wireless sensors can be used to take measurements including moisture, temperature, sunlight, and more. Sensors …


Simulating Low-Frequency Sonic Pulsations To Achieve Thrombolysis, Joseph C. Muskat, Matthew C. Pharris, Charles F. Babbs Aug 2015

Simulating Low-Frequency Sonic Pulsations To Achieve Thrombolysis, Joseph C. Muskat, Matthew C. Pharris, Charles F. Babbs

The Summer Undergraduate Research Fellowship (SURF) Symposium

Cardiovascular thrombosis may result in critical ischemia to a range of anatomical regions, constituting a leading cause of death in the United States. Current invasive treatments for such arterial blockages often yield blood clot recurrence, resulting in repeated hospitalization of patients. This research aims to show how internally introduced pressure oscillations may be used to initiate thrombolysis. We present a novel computational model for determining the resonant frequency and corresponding deformation of an idealized thrombus. Sinusoidal pressure differences across the thrombus induce axial displacements of frequency dependent amplitude. The maximum peak displacement occurs at a resonant frequency of 73 Hz …


Vast2015 Challenge Two: Event Analysis From Communication Data, Mahesh Babu Gorantla, William Hatton, Jieqiong Zhao, Abish Malik, David S. Ebert Aug 2015

Vast2015 Challenge Two: Event Analysis From Communication Data, Mahesh Babu Gorantla, William Hatton, Jieqiong Zhao, Abish Malik, David S. Ebert

The Summer Undergraduate Research Fellowship (SURF) Symposium

Social Media is a very good example of a large communication network. Typically, most data generated by social media are embedded with spatiotemporal stamps which hold crucial information than can help law enforcement agencies analyze the intensity of a calamity or chaos. Currently, not much research is done in designing a visual analytics system that incorporates clustering methods to analyze communication patterns. This research seeks to develop an analysis tool that represents such diverse data sets in user-friendly visual forms, to provide insights into the data that will improve the efficiency of event analysis. To analyze this data we have …


Implementation Of A Speech Recognition Algorithm To Facilitate Verbal Commands For Visual Analytics Law Enforcement Toolkit, Shubham S. Rastogi, David L. Wiszowaty, Hanye Xu, Abish Malik, David S. Ebert Aug 2015

Implementation Of A Speech Recognition Algorithm To Facilitate Verbal Commands For Visual Analytics Law Enforcement Toolkit, Shubham S. Rastogi, David L. Wiszowaty, Hanye Xu, Abish Malik, David S. Ebert

The Summer Undergraduate Research Fellowship (SURF) Symposium

The VALET (Visual Analytics Law Enforcement Toolkit) system allows the user to visualize and predict crime hotspots and analyze crime data. Police officers have difficulty in using VALET in a mobile situation, since the system allows only conventional input interfaces (keyboard and mouse). This research focuses on introducing a new input interface to VALET in the form of speech recognition, which allows the user to interact with the software without losing functionality. First an Application Program Interface (API) that was compatible with the VALET system was found and initial code scripts to test its functionality were written. Next, the code …


Synthesis And Characterization Of 2d Atomic Layers, Adam Charnas, Gang Qiu, Peide Ye Aug 2015

Synthesis And Characterization Of 2d Atomic Layers, Adam Charnas, Gang Qiu, Peide Ye

The Summer Undergraduate Research Fellowship (SURF) Symposium

As electronic devices have continued to become smaller, a pressing need has developed for new technologies in order to surpass current size constraints. As such, 2-dimensional materials have become a topic of great interest in experimental device research. Monolayer black phosphorus, or phosphorene, is one such 2D material which shows significant potential as a p-type semiconductor. Phosphorene exhibits a number of unique and desirable electrical properties such as a layer-dependent band gap, high carrier mobility, and anisotropic conductivity. An investigation into optimal growth of black phosphorus, the precursor material to phosphorene, as well as characterization of phosphorene-based devices will be …


Simulation, Control And Testing Of Advanced Hydraulic Hybrid Transmissions, Italo M. Ramos, Monika Ivantysynova, Michael Sprengel Aug 2015

Simulation, Control And Testing Of Advanced Hydraulic Hybrid Transmissions, Italo M. Ramos, Monika Ivantysynova, Michael Sprengel

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hydraulic hybrids transmissions have the potentially to substantially improve the fuel efficiency of on road vehicles. In fact recent studies have demonstrated that this technology can improve fuel economy by upwards of 30% over competing electric hybrids. To further improve the fuel economy and performance of this technology a novel blended hydraulic hybrid transmission has been constructed at the Maha Fluid Power Research Center. While this novel hybrid architecture created by the Maha lab has many benefits over conventional systems, there are a number of control challenges present due to several discrete modes of operation. And though improving fuel economy …


Temperature Dependence Of Electrical Performance Of Tritium Sourced Betavoltaic Cells, Darrell S. Cheu, Tom Adams, Shripad Revankar Aug 2015

Temperature Dependence Of Electrical Performance Of Tritium Sourced Betavoltaic Cells, Darrell S. Cheu, Tom Adams, Shripad Revankar

The Summer Undergraduate Research Fellowship (SURF) Symposium

There is an increasing need for devices that can be powered for extended periods of time where it is impossible for maintenance or replacement, such as pacemakers, long term space flight or undisturbed sensors for military use. Since 1971, most devices run off a Lithium-Iodide battery, which gives a high amount of power but could only last approximately 2 to 5 years, requiring frequent replacement. However, replacement is unnecessary for betavoltaic cells as they can last at least 20 years. Commercially available tritium betavoltaic cells provided by City Labs Inc. were tested at a temperature range of -50°C to 150°C …


Mass-Positioning Of Nanodiamonds Using Squeegee Technique, Ran Cui, Mikhail Y. Shalaginov, Vladimir M. Shalaev Aug 2015

Mass-Positioning Of Nanodiamonds Using Squeegee Technique, Ran Cui, Mikhail Y. Shalaginov, Vladimir M. Shalaev

The Summer Undergraduate Research Fellowship (SURF) Symposium

Fluorescent color centers in diamond nanocrystals have recently become the focus of researchers because of their potential applications in quantum information processing, nano-sensing, biomarking, and bioimaging. One of the biggest challenges in working with nanodiamonds is how to position them precisely and efficiently to create strong interaction with nanoscale photonic structures. The most popular methods to position nanodiamonds are spin-coating and transporting via scanning probe microscope tip. On the one hand, spin-coating, where nanodiamonds are randomly located, is not precise; on the other hand, the tip-based technique, where a single nanodiamond is picked and dropped, is tedious and time-consuming. Hence, …


Classification And Visualization Of Crime-Related Tweets, Ransen Niu, Jiawei Zhang, David S. Ebert Aug 2015

Classification And Visualization Of Crime-Related Tweets, Ransen Niu, Jiawei Zhang, David S. Ebert

The Summer Undergraduate Research Fellowship (SURF) Symposium

Millions of Twitter posts per day can provide an insight to law enforcement officials for improved situational awareness. In this paper, we propose a natural-language-processing (NLP) pipeline towards classification and visualization of crime-related tweets. The work is divided into two parts. First, we collect crime-related tweets by classification. Unlike written text, social media like Twitter includes substantial non-standard tokens or semantics. So we focus on exploring the underlying semantic features of crime-related tweets, including parts-of-speech properties and intention verbs. Then we use these features to train a classification model via Support Vector Machine. The second part is to utilize visual …


Simulating Nanowires And Ultra-Thin Body Transistors Using Nemo5 On Nanohub.Org, Liang Yuan Dai, James E. Fonseca, Chu Yuan Chen, Gerhard Klimeck Aug 2015

Simulating Nanowires And Ultra-Thin Body Transistors Using Nemo5 On Nanohub.Org, Liang Yuan Dai, James E. Fonseca, Chu Yuan Chen, Gerhard Klimeck

The Summer Undergraduate Research Fellowship (SURF) Symposium

During the past twenty years, the most important aspects of semiconductor electronics have advanced into the nanometer range, resulting in exponential increases of microprocessor computing performance. As the size of electrical components continues to shrink, the cost of experimental research and industrial fabrication in this field has increased dramatically. Thus, the development of accurate nanoscale model simulations becomes necessary as a measure to decrease the high financial expenses of advancing semiconductor technology. This simulator supports atomistic modeling in order to provide an accurate description of the nanoscale devices, as current electrical components operate in the quantum regime and are affected …


Simulation Design For Photovoltaics Using Finite Difference Time Domain And Quadratic Complex Rational Function Methods, Jacob R. Duritsch, Haejun Chung, Peter Bermel Aug 2015

Simulation Design For Photovoltaics Using Finite Difference Time Domain And Quadratic Complex Rational Function Methods, Jacob R. Duritsch, Haejun Chung, Peter Bermel

The Summer Undergraduate Research Fellowship (SURF) Symposium

Photovoltaics (PV) can in principle supply enough renewable energy to offset a great deal of fossil fuel usage. To achieve this transition, it is critical to develop improved PV cells with decreased material costs and improved efficiencies. This goal can be greatly facilitated by a tool simulating the absorption and efficiency of experimentally relevant 3-D PV designs made of realistic materials, including those that have not yet been discovered. By incorporating the quadratic complex rational function algorithm (QCRF) with the finite difference time domain methods (FDTD), simulations can include frequency response and optical properties, while allowing full customization of tandem …


Integrating Systems For Liquid/Substrate Characterization And Functional Printing, Jianyi Du, J. William Boley, Rebecca K. Kramer Aug 2015

Integrating Systems For Liquid/Substrate Characterization And Functional Printing, Jianyi Du, J. William Boley, Rebecca K. Kramer

The Summer Undergraduate Research Fellowship (SURF) Symposium

Gallium-Indium alloys are recently applied in fabricating soft devices, such as stretchable sensors, electric circuits, micro pumps and optics. Its printability demonstrates the possibility for a wide extension of the application. Current fabrication methods are inefficient when printing is most handled manually, and are highly dependent on material properties. There is need for a fast way to characterize material properties, and to functionally print the given shape on the substrate. This paper presents the construction of an efficiently integrated system with optical imaging and functional printing for Gallium-Indium alloys. The imaging section allows for characterization of material properties to fast …


Experimental Design And Construction For Critical Velocity Measurement In Spin-Orbit Coupled Bose-Einstein Condensates, Ting-Wei Hsu, Yong P. Chen Aug 2015

Experimental Design And Construction For Critical Velocity Measurement In Spin-Orbit Coupled Bose-Einstein Condensates, Ting-Wei Hsu, Yong P. Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

Quantum simulation using ultra-cold atoms, such as Bose-Einstein Condensates (BECs), offers a very flexible and well controlled environment to simulate physics in different systems. For example, to simulate the effects of spin orbit coupling (SOC) on electrons in solid state systems, we can make a SOC BEC which mimics the behavior of SOC electrons. The goal of this project is to see how the superfluid property of BECs change in the presence of SOC. In particular, we plan to measure the critical velocity of an 87Rb BEC with and without SOC by stirring it with a laser. This laser needs …


Simplified Generation Of The Input Models Of Object Oriented Micromagnetic Framework (Oommf), Jinyang Yu, Rafatul Faria, Supriyo Datta, Tanya A. Faltens Aug 2015

Simplified Generation Of The Input Models Of Object Oriented Micromagnetic Framework (Oommf), Jinyang Yu, Rafatul Faria, Supriyo Datta, Tanya A. Faltens

The Summer Undergraduate Research Fellowship (SURF) Symposium

Object Oriented MicroMagnetic Framework (OOMMF) is a micromagnetic simulation tool. It takes a memory initialization file (MIF) as the input and outputs various forms of data such as data table, graph and magnetic configuration plots. It is accurate and fast compared to other existing tools such as MATLAB. Few experimentalists used it in the past, however, due to two main reasons. First, OOMMF requires a specific version of programming environment on the local computer which is difficult to be installed. Second, MIF file is very complicated to code and it also requires users to read a lengthy guidelines. Our solution …


Wireless Power Transfer To A Small, Remote Control Boat, Mark M. Oscai, Michael D. Sinanis, Abbas Semnani, Dimitrios Peroulis Aug 2015

Wireless Power Transfer To A Small, Remote Control Boat, Mark M. Oscai, Michael D. Sinanis, Abbas Semnani, Dimitrios Peroulis

The Summer Undergraduate Research Fellowship (SURF) Symposium

Over the past few decades, researchers have explored and implemented methods of wireless power transmission to operate devices that traditionally have been powered using plug-in power supplies and batteries. It is with this objective in mind that we built a boat, which is powered wirelessly from a field of harvestable energy. This project sought to develop a wirelessly powered remote control boat to be a proof of concept for the idea of wireless power transfer. Our criteria for success is that the boat should receive sufficient power to run anywhere in a 2.5 meter squared area. Having defined the field …


P-Band Satellite Remote Sensing Antenna, Nishtha Sinha, James L. Garrison, Lin Yao-Cheng Aug 2015

P-Band Satellite Remote Sensing Antenna, Nishtha Sinha, James L. Garrison, Lin Yao-Cheng

The Summer Undergraduate Research Fellowship (SURF) Symposium

Today, there are a huge number of satellites out there in the space orbiting the earth, and there are specific frequency bands allocated for data transmission from these satellites. Signals from these satellites can be accessed at different places on earth, and used for remote sensing. Lower frequency bands are being used in this project, which have not been used earlier for remote sensing. The main idea of this study is to use the properties of two P-band communication satellites to assess their utility for ‘reflectometry’. This remote sensing method is based upon the comparison of the direct and reflected …


The Effects Of Vagus Nerve Stimulation On Neuroinflammation In Epilepsy, Elizabeth A. St. Clair, Gabriel O Albors, Pedro Irazoqui Dr., Amy Brewster Aug 2015

The Effects Of Vagus Nerve Stimulation On Neuroinflammation In Epilepsy, Elizabeth A. St. Clair, Gabriel O Albors, Pedro Irazoqui Dr., Amy Brewster

The Summer Undergraduate Research Fellowship (SURF) Symposium

Epilepsy is a neurological disorder characterized by chronic, unexplainable seizures. Recurring epileptic seizures are associated with long-term structural damage and cognitive deficits, and can even lead to sudden, unexplainable death. Approximately 30% of epilepsy cases are not responsive to medication. Epileptic seizures often induce inflammation in the brain and may increase the frequency of future seizures, resulting in a detrimental cycle. Vagus nerve stimulation (VNS) is a non-pharmaceutical treatment method for epilepsy that has been shown to reduce inflammation in peripheral pathways. The role of VNS in the modulation of neuroinflammation has yet to be demonstrated experimentally. To explore this, …


Adaptive Motion Pooling And Diffusion For Optical Flow, Naga Venkata Kartheek Medathati, Pierre Kornprobst, Guillaume Masson, Manuela Chessa, Fabio Solari May 2015

Adaptive Motion Pooling And Diffusion For Optical Flow, Naga Venkata Kartheek Medathati, Pierre Kornprobst, Guillaume Masson, Manuela Chessa, Fabio Solari

MODVIS Workshop

We study the impact of local context of an image (contrast and 2D structure) on spatial motion integration by MT neurons. To do so, we revisited the seminal work by Heeger and Simoncelli (HS) [4] using spatio-temporal filters to estimate optical flow from V1-MT feedforward interactions. However, the HS model has difficulties to deal with several problems encountered in real scenes (e.g., blank wall problem and motion discontinuities). Here, we propose to extend the HS model with adaptive processing by focussing on the role of local context indicative of the local velocity estimates reliability. We set a network structure representative …


Design, Construction, And Utilization Of Physical Vapor Deposition Systems For Medical Sensor Fabrication, Nicholas Sayre, Erik J. Sánchez, Joe Kowalski May 2015

Design, Construction, And Utilization Of Physical Vapor Deposition Systems For Medical Sensor Fabrication, Nicholas Sayre, Erik J. Sánchez, Joe Kowalski

Student Research Symposium

The development of a novel blood glucose sensor is realized through construction of a homemade plasma coating system and utilization of semiconductor manufacturing processes in a small scale cleanroom environment. Photolithography, plasma sputtering, chemical etching and thin film measurement technologies are used in the medical sensor fabrication process. General process flow will be discussed, and system design and the plasma sputtering process will be presented as it is achieved by the system currently under development.


Audio Jack Data Communication On Smartphones, Ziyuan Li Apr 2015

Audio Jack Data Communication On Smartphones, Ziyuan Li

Annual Graduate Student Symposium

By choosing adequate modulation and demodulation schemes on a smartphone and a client device, via the audio jack of the smartphone we can achieve a data transmitting rate of about 1k bits per second from the smartphone to the client device and 7.35k bit per second from the client device to the smartphone, which is sufficient for the smartphone to control and collect data from the client device.


User Effects On Wearable Conformal Scmr System, Karina Quintana, John Gibson Mar 2015

User Effects On Wearable Conformal Scmr System, Karina Quintana, John Gibson

Undergraduate Research at FIU (URFIU) Conference

The performance of a compact, wearable Conformal Strongly Coupled Magnetic Resonance (CSCMR) system is studied when the antenna is in the air and is worn on a user’s arm. The wireless powering system consists of the receiver and load elements designed on a printed circuit board that is attached to a polyester fabric band. The wearable antenna achieves high efficiency, has a small volume, and can be easily printed on substrates. Although the user effect on mobile terminal antennas has been studied in detail, absorption losses in wearable antennas have not been widely investigated. Our results show that efficiency of …


Atmospheric Weather Balloon For Near Space Research, Francisco F. Pastrana, Devonte Grantham, Shane M. Williams, Jessy Law, Jennifer Nason, Janet Marrnane Jan 2015

Atmospheric Weather Balloon For Near Space Research, Francisco F. Pastrana, Devonte Grantham, Shane M. Williams, Jessy Law, Jennifer Nason, Janet Marrnane

Aviation / Aeronautics / Aerospace International Research Conference

Atmospheric Weather Balloon for Near Space Research

The Society for S.P.A.C.E. has been working on the development of a weather balloon that will reach a height of 80 to 100 thousand feet and will collect data from the atmosphere. The weather balloon is attached to a Styrofoam box that contains an Arduino board controlling a set of sensors that will measure: temperature, humidity, atmospheric pressure, wind speed and direction.

The data will be collected and transmitted through an Xbee antenna that will provide us with remote monitoring capabilities. The data and images gathered will aid understanding of the characteristics and …