Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

PDF

Michigan Technological University

Open-source hardware

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Modular Open-Source Design Of Pyrolysis Reactor Monitoring And Control Electronics, Finn K. Hafting, Daniel G. Kulas, Etienne Michels, Sarvada Chipkar, Stefan Wisniewski, David Shonnard, Joshua M. Pearce Dec 2023

Modular Open-Source Design Of Pyrolysis Reactor Monitoring And Control Electronics, Finn K. Hafting, Daniel G. Kulas, Etienne Michels, Sarvada Chipkar, Stefan Wisniewski, David Shonnard, Joshua M. Pearce

Michigan Tech Publications, Part 2

Industrial pilot projects often rely on proprietary and expensive electronic hardware to control and monitor experiments. This raises costs and retards innovation. Open-source hardware tools exist for implementing these processes individually; however, they are not easily integrated with other designs. The Broadly Reconfigurable and Expandable Automation Device (BREAD) is a framework that provides many open-source devices which can be connected to create more complex data acquisition and control systems. This article explores the feasibility of using BREAD plug-and-play open hardware to quickly design and test monitoring and control electronics for an industrial materials processing prototype pyrolysis reactor. Generally, pilot-scale pyrolysis …


Open Source Arc Analyzer: Multi-Sensor Monitoring Of Wire Arc Additive Manufacturing, Adam M. Pringle, Shane Oberloier, Aliaksei Petsiuk, Paul G. Sanders, Joshua M. Pearce Oct 2020

Open Source Arc Analyzer: Multi-Sensor Monitoring Of Wire Arc Additive Manufacturing, Adam M. Pringle, Shane Oberloier, Aliaksei Petsiuk, Paul G. Sanders, Joshua M. Pearce

Michigan Tech Publications

Low-cost high-resolution metal 3-D printing remains elusive for the scientific community. Low-cost gas metal arc wire (GMAW)-based 3-D printing enables wire arc additive manufacturing (WAAM) for near net shape applications, but has limited resolution due to the complexities of the arcing process. To begin to monitor and thus control these complexities, the initial designs of the open source GMAW 3-D printer have evolved to include current and voltage monitoring. Building on this prior work, in this study, the design, fabrication and use of the open source arc analyzer is described. The arc analyzer is a multi-sensor monitoring system for quantifying …


Open-Source Grinding Machine For Compression Screw Manufacturing, Jacob Franz, Joshua M. Pearce Sep 2020

Open-Source Grinding Machine For Compression Screw Manufacturing, Jacob Franz, Joshua M. Pearce

Michigan Tech Publications

Some of the most promising distributed recycling and additive manufacturing (DRAM) technical systems use fused particle fabrication (FPF) or fused granular fabrication (FGF), where compression screws force post-consumer waste plastic through a heated nozzle for direct 3D printing. To assist the technical evolution of these systems, this study provided the details of an invention for a low-cost, easily replicable open-source grinding machine for compression screw manufacturing. The system itself can be largely fabricated using FPF/FGF following the self-replicating rapid prototyper (RepRap) methodology. This grinding machine can be made from a cordless cut-off grinder and < $155 in parts. The new invention is demonstrated to be able to cut custom screws with variable (i) channel depths, (ii) screw diameters, (iii) screw lengths, (iv) pitches, (v) abrasive disk thicknesses, (vi) handedness of the screws, (vii) and materials (three types of steel tested: 1045 steel, 1144 steel, and 416 stainless steel). The results show that the device is more than capable of replicating commercial screws as well as providing makers with a much greater flexibility to make custom screws. This invention enables the DRAM toolchain to become even more self-sufficient, which assists the goals of the circular economy.


Open-Source Digitally Replicable Lab-Grade Scales, Benjamin R. Hubbard, Joshua M. Pearce Jun 2020

Open-Source Digitally Replicable Lab-Grade Scales, Benjamin R. Hubbard, Joshua M. Pearce

Michigan Tech Publications

This study provides designs for a low-cost, easily replicable open-source lab-grade digital scale that can be used as a precision balance. The design is such that it can be manufactured for use in most labs throughout the world with open-source RepRap-class material extrusion-based 3-D printers for the mechanical components and readily available open-source electronics including the Arduino Nano. Several versions of the design were fabricated and tested for precision and accuracy for a range of load cells. The results showed the open-source scale was found to be repeatable within 0.05 g with multiple load cells, with even better precision (0.005 …