Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

External Link

Electroluminescence

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Analyses Of Electroluminescence Spectra Of Silicon Junctions In Avalanche Breakdown Using An Indirect Interband Recombination Model, David Kerns, Sherra Kerns, M Lahbabi, A Ahaitouf, E Abarkan, M Fliyou, A Hoffmann, J Charles, Bharat Bhuva Apr 2012

Analyses Of Electroluminescence Spectra Of Silicon Junctions In Avalanche Breakdown Using An Indirect Interband Recombination Model, David Kerns, Sherra Kerns, M Lahbabi, A Ahaitouf, E Abarkan, M Fliyou, A Hoffmann, J Charles, Bharat Bhuva

Sherra E. Kerns

Light emission from a p-n junction biased in avalanche breakdown has been modeled over the range 1.4–3.4 eV. The model emphasizes indirect interband processes and Si self-absorption. Comparisons between measured and simulated spectra for sample junctions from multiple devices demonstrate that the model is simple, accurate, and consistent with fundamental physical device characteristics.


Simulation Of Gallium Arsenide Electroluminescence Spectra In Avalanche Breakdown Using Self-Absorption And Recombination Models, David Kerns, Sherra Kerns, M Lahbabi, A Ahaitouf, E Abarkan, M Fliyou, A Hoffmann, J Charles, Bharat Bhuva Apr 2012

Simulation Of Gallium Arsenide Electroluminescence Spectra In Avalanche Breakdown Using Self-Absorption And Recombination Models, David Kerns, Sherra Kerns, M Lahbabi, A Ahaitouf, E Abarkan, M Fliyou, A Hoffmann, J Charles, Bharat Bhuva

Sherra E. Kerns

Light emission from gallium arsenide (GaAs) p–n junctions biased in avalanche breakdown have been modeled over the range of 1.4–3.4 eV. The model emphasizes direct and indirect recombination processes and bulk self-absorption. Comparisons between measured and simulated spectra for sample junctions from custom and commercially fabricated GaAs devices demonstrate that the model is simple, accurate, and consistent with fundamental physical device theory. The model also predicts the junction depth with accuracy.


Analyses Of Electroluminescence Spectra Of Silicon Junctions In Avalanche Breakdown Using An Indirect Interband Recombination Model, David Kerns, Sherra Kerns, M Lahbabi, A Ahaitouf, E Abarkan, M Fliyou, A Hoffmann, J Charles, Bharat Bhuva Apr 2012

Analyses Of Electroluminescence Spectra Of Silicon Junctions In Avalanche Breakdown Using An Indirect Interband Recombination Model, David Kerns, Sherra Kerns, M Lahbabi, A Ahaitouf, E Abarkan, M Fliyou, A Hoffmann, J Charles, Bharat Bhuva

David V. Kerns

Light emission from a p-n junction biased in avalanche breakdown has been modeled over the range 1.4–3.4 eV. The model emphasizes indirect interband processes and Si self-absorption. Comparisons between measured and simulated spectra for sample junctions from multiple devices demonstrate that the model is simple, accurate, and consistent with fundamental physical device characteristics.


Simulation Of Gallium Arsenide Electroluminescence Spectra In Avalanche Breakdown Using Self-Absorption And Recombination Models, David Kerns, Sherra Kerns, M Lahbabi, A Ahaitouf, E Abarkan, M Fliyou, A Hoffmann, J Charles, Bharat Bhuva Apr 2012

Simulation Of Gallium Arsenide Electroluminescence Spectra In Avalanche Breakdown Using Self-Absorption And Recombination Models, David Kerns, Sherra Kerns, M Lahbabi, A Ahaitouf, E Abarkan, M Fliyou, A Hoffmann, J Charles, Bharat Bhuva

David V. Kerns

Light emission from gallium arsenide (GaAs) p–n junctions biased in avalanche breakdown have been modeled over the range of 1.4–3.4 eV. The model emphasizes direct and indirect recombination processes and bulk self-absorption. Comparisons between measured and simulated spectra for sample junctions from custom and commercially fabricated GaAs devices demonstrate that the model is simple, accurate, and consistent with fundamental physical device theory. The model also predicts the junction depth with accuracy.