Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Faculty Publications

Machine learning

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Data Augmentation For Neutron Spectrum Unfolding With Neural Networks, James Mcgreivy, Juan J. Manfredi, Daniel Siefman Jan 2023

Data Augmentation For Neutron Spectrum Unfolding With Neural Networks, James Mcgreivy, Juan J. Manfredi, Daniel Siefman

Faculty Publications

Neural networks require a large quantity of training spectra and detector responses in order to learn to solve the inverse problem of neutron spectrum unfolding. In addition, due to the under-determined nature of unfolding, non-physical spectra which would not be encountered in usage should not be included in the training set. While physically realistic training spectra are commonly determined experimentally or generated through Monte Carlo simulation, this can become prohibitively expensive when considering the quantity of spectra needed to effectively train an unfolding network. In this paper, we present three algorithms for the generation of large quantities of realistic and …


Machine Learning Land Cover And Land Use Classification Of 4-Band Satellite Imagery, Lorelei Turner [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals Jan 2022

Machine Learning Land Cover And Land Use Classification Of 4-Band Satellite Imagery, Lorelei Turner [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals

Faculty Publications

Land-cover and land-use classification generates categories of terrestrial features, such as water or trees, which can be used to track how land is used. This work applies classical, ensemble and neural network machine learning algorithms to a multispectral remote sensing dataset containing 405,000 28x28 pixel image patches in 4 electromagnetic frequency bands. For each algorithm, model metrics and prediction execution time were evaluated, resulting in two families of models; fast and precise. The prediction time for an 81,000-patch group of predictions wasmodels, and >5s for the precise models, and there was not a significant change in prediction time when a …


Synthetic Aperture Radar Image Recognition Of Armored Vehicles, Christopher Szul [*], Torrey J. Wagner, Brent T. Langhals Jun 2021

Synthetic Aperture Radar Image Recognition Of Armored Vehicles, Christopher Szul [*], Torrey J. Wagner, Brent T. Langhals

Faculty Publications

Synthetic Aperture Radar (SAR) imagery is not affected by weather and allows for day-and-night observations, however it can be difficult to interpret. This work applies classical and neural network machine learning techniques to perform image classification of SAR imagery. The Moving and Stationary Target Acquisition and Recognition dataset from the Air Force Research Laboratory was used, which contained 2,987 total observations of the BMP-2, BTR-70, and T-72 vehicles. Using a 75%/25% train/test split, the classical model achieved an average multi-class image recognition accuracy of 70%, while a convolutional neural network was able to achieve a 97% accuracy with lower model …


Mlatticeabc: Generic Lattice Constant Prediction Of Crystal Materials Using Machine Learning, Yuxin Li, Wenhui Yang, Rongzhi Dong, Jianjun Hu Apr 2021

Mlatticeabc: Generic Lattice Constant Prediction Of Crystal Materials Using Machine Learning, Yuxin Li, Wenhui Yang, Rongzhi Dong, Jianjun Hu

Faculty Publications

Lattice constants such as unit cell edge lengths and plane angles are important parameters of the periodic structures of crystal materials. Predicting crystal lattice constants has wide applications in crystal structure prediction and materials property prediction. Previous work has used machine learning models such as neural networks and support vector machines combined with composition features for lattice constant prediction and has achieved a maximum performance for cubic structures with an average coefficient of determination (R2) of 0.82. Other models tailored for special materials family of a fixed form such as ABX3 perovskites can achieve much higher performance due …


A Physics-Based Machine Learning Study Of The Behavior Of Interstitial Helium In Single Crystal W–Mo Binary Alloys, Adib J. Samin May 2020

A Physics-Based Machine Learning Study Of The Behavior Of Interstitial Helium In Single Crystal W–Mo Binary Alloys, Adib J. Samin

Faculty Publications

In this work, the behavior of dilute interstitial helium in W–Mo binary alloys was explored through the application of a first principles-informed neural network (NN) in order to study the early stages of helium-induced damage and inform the design of next generation materials for fusion reactors. The neural network (NN) was trained using a database of 120 density functional theory (DFT) calculations on the alloy. The DFT database of computed solution energies showed a linear dependence on the composition of the first nearest neighbor metallic shell. This NN was then employed in a kinetic Monte Carlo simulation, which took into …


Cyber-Physical Security With Rf Fingerprint Classification Through Distance Measure Extensions Of Generalized Relevance Learning Vector Quantization, Trevor J. Bihl, Todd J. Paciencia, Kenneth W. Bauer Jr., Michael A. Temple Feb 2020

Cyber-Physical Security With Rf Fingerprint Classification Through Distance Measure Extensions Of Generalized Relevance Learning Vector Quantization, Trevor J. Bihl, Todd J. Paciencia, Kenneth W. Bauer Jr., Michael A. Temple

Faculty Publications

Radio frequency (RF) fingerprinting extracts fingerprint features from RF signals to protect against masquerade attacks by enabling reliable authentication of communication devices at the “serial number” level. Facilitating the reliable authentication of communication devices are machine learning (ML) algorithms which find meaningful statistical differences between measured data. The Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifier is one ML algorithm which has shown efficacy for RF fingerprinting device discrimination. GRLVQI extends the Learning Vector Quantization (LVQ) family of “winner take all” classifiers that develop prototype vectors (PVs) which represent data. In LVQ algorithms, distances are computed between exemplars and PVs, and …


Critical Temperature Prediction Of Superconductors Based On Atomic Vectors And Deep Learning, Shaobo Li, Yabo Dan, Xiang Li, Tiantian Hu, Rongzhi Dong, Zhuo Cao, Jianjun Hu Feb 2020

Critical Temperature Prediction Of Superconductors Based On Atomic Vectors And Deep Learning, Shaobo Li, Yabo Dan, Xiang Li, Tiantian Hu, Rongzhi Dong, Zhuo Cao, Jianjun Hu

Faculty Publications

In this paper, a hybrid neural network (HNN) that combines a convolutional neural network (CNN) and long short-term memory neural network (LSTM) is proposed to extract the high-level characteristics of materials for critical temperature (Tc) prediction of superconductors. Firstly, by obtaining 73,452 inorganic compounds from the Materials Project (MP) database and building an atomic environment matrix, we obtained a vector representation (atomic vector) of 87 atoms by singular value decomposition (SVD) of the atomic environment matrix. Then, the obtained atom vector was used to implement the coded representation of the superconductors in the order of the atoms in the chemical …