Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Quantifying Seagrass Distribution In Coastal Water With Deep Learning Models, Daniel Perez, Kazi Islam, Victoria Hill, Richard Zimmerman, Blake Schaeffer, Yuzhong Shen, Jiang Li Jan 2020

Quantifying Seagrass Distribution In Coastal Water With Deep Learning Models, Daniel Perez, Kazi Islam, Victoria Hill, Richard Zimmerman, Blake Schaeffer, Yuzhong Shen, Jiang Li

OES Faculty Publications

Coastal ecosystems are critically affected by seagrass, both economically and ecologically. However, reliable seagrass distribution information is lacking in nearly all parts of the world because of the excessive costs associated with its assessment. In this paper, we develop two deep learning models for automatic seagrass distribution quantification based on 8-band satellite imagery. Specifically, we implemented a deep capsule network (DCN) and a deep convolutional neural network (CNN) to assess seagrass distribution through regression. The DCN model first determines whether seagrass is presented in the image through classification. Second, if seagrass is presented in the image, it quantifies the seagrass …


Detection Of Seagrass Scars Using Sparse Coding And Morphological Filter, Ender Oguslu, Sertan Erkanli, Victoria J. Hill, W. Paul Bissett, Richard C. Zimmerman, Jiang Li, Charles R. Bostater Jr. (Ed.), Stelios P. Mertikas (Ed.), Xavier Neyt (Ed.) Jan 2014

Detection Of Seagrass Scars Using Sparse Coding And Morphological Filter, Ender Oguslu, Sertan Erkanli, Victoria J. Hill, W. Paul Bissett, Richard C. Zimmerman, Jiang Li, Charles R. Bostater Jr. (Ed.), Stelios P. Mertikas (Ed.), Xavier Neyt (Ed.)

OES Faculty Publications

We present a two-step algorithm for the detection of seafloor propeller seagrass scars in shallow water using panchromatic images. The first step is to classify image pixels into scar and non-scar categories based on a sparse coding algorithm. The first step produces an initial scar map in which false positive scar pixels may be present. In the second step, local orientation of each detected scar pixel is computed using the morphological directional profile, which is defined as outputs of a directional filter with a varying orientation parameter. The profile is then utilized to eliminate false positives and generate the final …