Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

A Reputation System For Provably-Robust Decision Making In Iot Blockchain Networks, Charles C. Rawlins, Sarangapani Jagannathan, Venkata Sriram Siddhardh Nadendla Apr 2024

A Reputation System For Provably-Robust Decision Making In Iot Blockchain Networks, Charles C. Rawlins, Sarangapani Jagannathan, Venkata Sriram Siddhardh Nadendla

Electrical and Computer Engineering Faculty Research & Creative Works

Blockchain systems have been successful in discerning truthful information from interagent interaction amidst possible attackers or conflicts, which is crucial for the completion of nontrivial tasks in distributed networking. However, the state-of-the-art blockchain protocols are limited to resource-rich applications where reliably connected nodes within the network are equipped with significant computing power to run lottery-based proof-of-work (pow) consensus. The purpose of this work is to address these challenges for implementation in a severely resource-constrained distributed network with internet of things (iot) devices. The contribution of this work is a novel lightweight alternative, called weight-based reputation (wbr) scheme, to classify new …


Convolutional Spiking Neural Networks For Intent Detection Based On Anticipatory Brain Potentials Using Electroencephalogram, Nathan Lutes, V. Sriram Siddhardh Nadendla, K. Krishnamurthy Apr 2024

Convolutional Spiking Neural Networks For Intent Detection Based On Anticipatory Brain Potentials Using Electroencephalogram, Nathan Lutes, V. Sriram Siddhardh Nadendla, K. Krishnamurthy

Computer Science Faculty Research & Creative Works

Spiking neural networks (SNNs) are receiving increased attention because they mimic synaptic connections in biological systems and produce spike trains, which can be approximated by binary values for computational efficiency. Recently, the addition of convolutional layers to combine the feature extraction power of convolutional networks with the computational efficiency of SNNs has been introduced. This paper studies the feasibility of using a convolutional spiking neural network (CSNN) to detect anticipatory slow cortical potentials (SCPs) related to braking intention in human participants using an electroencephalogram (EEG). Data was collected during an experiment wherein participants operated a remote-controlled vehicle on a testbed …


Cr-Sam: Curvature Regularized Sharpness-Aware Minimization, Tao Wu, Tony Tie Luo, Donald C. Wunsch Mar 2024

Cr-Sam: Curvature Regularized Sharpness-Aware Minimization, Tao Wu, Tony Tie Luo, Donald C. Wunsch

Computer Science Faculty Research & Creative Works

The Capacity to Generalize to Future Unseen Data Stands as One of the Utmost Crucial Attributes of Deep Neural Networks. Sharpness-Aware Minimization (SAM) Aims to Enhance the Generalizability by Minimizing Worst-Case Loss using One-Step Gradient Ascent as an Approximation. However, as Training Progresses, the Non-Linearity of the Loss Landscape Increases, Rendering One-Step Gradient Ascent Less Effective. on the Other Hand, Multi-Step Gradient Ascent Will Incur Higher Training Cost. in This Paper, We Introduce a Normalized Hessian Trace to Accurately Measure the Curvature of Loss Landscape on Both Training and Test Sets. in Particular, to Counter Excessive Non-Linearity of Loss Landscape, …


Lrs: Enhancing Adversarial Transferability Through Lipschitz Regularized Surrogate, Tao Wu, Tony Tie Luo, Donald C. Wunsch Mar 2024

Lrs: Enhancing Adversarial Transferability Through Lipschitz Regularized Surrogate, Tao Wu, Tony Tie Luo, Donald C. Wunsch

Computer Science Faculty Research & Creative Works

The Transferability of Adversarial Examples is of Central Importance to Transfer-Based Black-Box Adversarial Attacks. Previous Works for Generating Transferable Adversarial Examples Focus on Attacking Given Pretrained Surrogate Models While the Connections between Surrogate Models and Adversarial Trasferability Have Been overlooked. in This Paper, We Propose Lipschitz Regularized Surrogate (LRS) for Transfer-Based Black-Box Attacks, a Novel Approach that Transforms Surrogate Models towards Favorable Adversarial Transferability. using Such Transformed Surrogate Models, Any Existing Transfer-Based Black-Box Attack Can Run Without Any Change, Yet Achieving Much Better Performance. Specifically, We Impose Lipschitz Regularization on the Loss Landscape of Surrogate Models to Enable a Smoother …


Analyzing Biomedical Datasets With Symbolic Tree Adaptive Resonance Theory, Sasha Petrenko, Daniel B. Hier, Mary A. Bone, Tayo Obafemi-Ajayi, Erik J. Timpson, William E. Marsh, Michael Speight, Donald C. Wunsch Mar 2024

Analyzing Biomedical Datasets With Symbolic Tree Adaptive Resonance Theory, Sasha Petrenko, Daniel B. Hier, Mary A. Bone, Tayo Obafemi-Ajayi, Erik J. Timpson, William E. Marsh, Michael Speight, Donald C. Wunsch

Chemistry Faculty Research & Creative Works

Biomedical Datasets Distill Many Mechanisms Of Human Diseases, Linking Diseases To Genes And Phenotypes (Signs And Symptoms Of Disease), Genetic Mutations To Altered Protein Structures, And Altered Proteins To Changes In Molecular Functions And Biological Processes. It Is Desirable To Gain New Insights From These Data, Especially With Regard To The Uncovering Of Hierarchical Structures Relating Disease Variants. However, Analysis To This End Has Proven Difficult Due To The Complexity Of The Connections Between Multi-Categorical Symbolic Data. This Article Proposes Symbolic Tree Adaptive Resonance Theory (START), With Additional Supervised, Dual-Vigilance (DV-START), And Distributed Dual-Vigilance (DDV-START) Formulations, For The Clustering Of …


Continual Online Learning-Based Optimal Tracking Control Of Nonlinear Strict-Feedback Systems: Application To Unmanned Aerial Vehicles, Irfan Ganie, Sarangapani Jagannathan Mar 2024

Continual Online Learning-Based Optimal Tracking Control Of Nonlinear Strict-Feedback Systems: Application To Unmanned Aerial Vehicles, Irfan Ganie, Sarangapani Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

A novel optimal trajectory tracking scheme is introduced for nonlinear continuous-time systems in strict feedback form with uncertain dynamics by using neural networks (NNs). The method employs an actor-critic-based NN back-stepping technique for minimizing a discounted value function along with an identifier to approximate unknown system dynamics that are expressed in augmented form. Novel online weight update laws for the actor and critic NNs are derived by using both the NN identifier and Hamilton-Jacobi-Bellman residual error. A new continual lifelong learning technique utilizing the Fisher Information Matrix via Hamilton-Jacobi-Bellman residual error is introduced to obtain the significance of weights in …


Optimal Trajectory Tracking For Uncertain Linear Discrete-Time Systems Using Time-Varying Q-Learning, Maxwell Geiger, Vignesh Narayanan, Sarangapani Jagannathan Jan 2024

Optimal Trajectory Tracking For Uncertain Linear Discrete-Time Systems Using Time-Varying Q-Learning, Maxwell Geiger, Vignesh Narayanan, Sarangapani Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This Article Introduces a Novel Optimal Trajectory Tracking Control Scheme Designed for Uncertain Linear Discrete-Time (DT) Systems. in Contrast to Traditional Tracking Control Methods, Our Approach Removes the Requirement for the Reference Trajectory to Align with the Generator Dynamics of an Autonomous Dynamical System. Moreover, It Does Not Demand the Complete Desired Trajectory to Be Known in Advance, Whether through the Generator Model or Any Other Means. Instead, Our Approach Can Dynamically Incorporate Segments (Finite Horizons) of Reference Trajectories and Autonomously Learn an Optimal Control Policy to Track Them in Real Time. to Achieve This, We Address the Tracking Problem …


Adaptive Resilient Control For A Class Of Nonlinear Distributed Parameter Systems With Actuator Faults, Hasan Ferdowsi, Jia Cai, Sarangapani Jagannathan Jan 2024

Adaptive Resilient Control For A Class Of Nonlinear Distributed Parameter Systems With Actuator Faults, Hasan Ferdowsi, Jia Cai, Sarangapani Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

This paper presents a new model-based fault resilient control scheme for a class of nonlinear distributed parameter systems (DPS) represented by parabolic partial differential equations (PDE) in the presence of actuator faults. A Luenberger-like observer on the basis of nonlinear PDE representation of DPS is developed with boundary measurements. A detection residual is generated by taking the difference between the measured output of the DPS and the estimated one given by the observer. Once a fault is detected, an unknown actuator fault parameter vector together with a known basis function is utilized to adaptively estimate the fault dynamics. A novel …


Meta-Icvi: Ensemble Validity Metrics For Concise Labeling Of Correct, Under- Or Over-Partitioning In Streaming Clustering, Niklas M. Melton, Sasha A. Petrenko, Donald C. Wunsch Jan 2024

Meta-Icvi: Ensemble Validity Metrics For Concise Labeling Of Correct, Under- Or Over-Partitioning In Streaming Clustering, Niklas M. Melton, Sasha A. Petrenko, Donald C. Wunsch

Electrical and Computer Engineering Faculty Research & Creative Works

Understanding the performance and validity of clustering algorithms is both challenging and crucial, particularly when clustering must be done online. Until recently, most validation methods have relied on batch calculation and have required considerable human expertise in their interpretation. Improving real-time performance and interpretability of cluster validation, therefore, continues to be an important theme in unsupervised learning. Building upon previous work on incremental cluster validity indices (iCVIs), this paper introduces the Meta- iCVI as a tool for explainable and concise labeling of partition quality in online clustering. Leveraging a time-series classifier and data-fusion techniques, the Meta- iCVI combines the outputs …