Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Nonlinear Development And Secondary Instability Of Traveling Crossflow Vortices, Fei Li, Meelan M. Choudhari, Lian Duan, Chau-Lyan Chang Jan 2014

Nonlinear Development And Secondary Instability Of Traveling Crossflow Vortices, Fei Li, Meelan M. Choudhari, Lian Duan, Chau-Lyan Chang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Building upon the prior research targeting the laminar breakdown mechanisms associated with stationary crossflow instability over a swept-wing configuration, this paper investigates the secondary instability of traveling crossflow modes as an alternate scenario for transition. For the parameter range investigated herein, this alternate scenario is shown to be viable unless the initial amplitudes of the traveling crossflow instability are lower than those of the stationary modes by considerably more than one order of magnitude. The linear growth predictions based on the secondary instability theory are found to agree well with both parabolized stability equations and direct numerical simulation, and the …


Nanomanipulation Using Atomic Force Microscope With Drift Compensation, Qinmin Yang, Jagannathan Sarangapani Jun 2006

Nanomanipulation Using Atomic Force Microscope With Drift Compensation, Qinmin Yang, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

This paper proposes an atomic force microscope (AFM) based force controller to push nanoparticles on the substrates since it is tedious for human. A block phase correlation-based algorithm is embedded into the controller for compensating the thermal drift during nanomanipulation. Further, a neural network (NN) is employed to approximate the unknown nanoparticle and substrate contact dynamics including the roughness effects. Using the NN-based adaptive force controller the task of pushing nanoparticles is demonstrated. Finally, using the Lyapunov-based stability analysis, the uniform ultimately boundedness (UUB) of the closed-loop signals is demonstrated


Neural Network-Based Output Feedback Controller For Lean Operation Of Spark Ignition Engines, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier, Jonathan B. Vance, Pingan He Jan 2006

Neural Network-Based Output Feedback Controller For Lean Operation Of Spark Ignition Engines, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier, Jonathan B. Vance, Pingan He

Electrical and Computer Engineering Faculty Research & Creative Works

Spark ignition (SI) engines running at very lean conditions demonstrate significant nonlinear behavior by exhibiting cycle-to-cycle dispersion of heat release even though such operation can significantly reduce NOx emissions and improve fuel efficiency by as much as 5-10%. A suite of neural network (NN) controller without and with reinforcement learning employing output feedback has shown ability to reduce the nonlinear cyclic dispersion observed under lean operating conditions. The neural network controllers consists of three NN: a) A NN observer to estimate the states of the engine such as total fuel and air; b) a second NN for generating virtual input; …


Neuro Emission Controller For Minimizing Cyclic Dispersion In Spark Ignition Engines, Pingan He, Jagannathan Sarangapani Jan 2003

Neuro Emission Controller For Minimizing Cyclic Dispersion In Spark Ignition Engines, Pingan He, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

A novel neural network (NN) controller is developed to control spark ignition (SI) engines at extreme lean conditions. The purpose of neurocontroller is to reduce the cyclic dispersion at lean operation even when the engine dynamics are unknown. The stability analysis of the closed-loop control system is given and the boundedness of all signals is ensured. Results demonstrate that the cyclic dispersion is reduced significantly using the proposed controller. The neuro controller can also be extended to minimize engine emissions with high EGR levels, where similar complex cyclic dynamics are observed. Further, the proposed approach can be applied to control …


A Hybrid System Theoretic Approach For Admission Controller Design In Multimedia Networks, Sarangapani Jagannathan Jan 2002

A Hybrid System Theoretic Approach For Admission Controller Design In Multimedia Networks, Sarangapani Jagannathan

Electrical and Computer Engineering Faculty Research & Creative Works

A novel real-time discrete-event admission control (AC) scheme for high-speed networks is proposed with the aim of attaining a desired quality of service (QoS) and high network utilization. The AC uses the available capacity from a novel adaptive bandwidth estimation scheme, a congestion indicator derived from a congestion controller, peak bit/cell rate (PBR/PCR) estimate from new sources, along with the desired QoS metrics, and makes decisions whether to 'admit' or 'reject' new sources. The novel aspect of the proposed approach is the application of hybrid system theory to prove the performance of the admission controller, stability and the development of …