Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Incorporating Priors For Medical Image Segmentation Using A Genetic Algorithm, Payel Ghosh, Melanie Mitchell, James A. Tanyi, Arthur Y. Hung Feb 2016

Incorporating Priors For Medical Image Segmentation Using A Genetic Algorithm, Payel Ghosh, Melanie Mitchell, James A. Tanyi, Arthur Y. Hung

Computer Science Faculty Publications and Presentations

Medical image segmentation is typically performed manually by a physician to delineate gross tumor volumes for treatment planning and diagnosis. Manual segmentation is performed by medical experts using prior knowledge of organ shapes and locations but is prone to reader subjectivity and inconsistency. Automating the process is challenging due to poor tissue contrast and ill-defined organ/tissue boundaries in medical images. This paper presents a genetic algorithm for combining representations of learned information such as known shapes, regional properties and relative position of objects into a single framework to perform automated three-dimensional segmentation. The algorithm has been tested for prostate segmentation …


Computational Doping For Fuel Cell Material Design Based On Genetic Algorithms And Genetic Programming, Emrah Atilgan Jan 2016

Computational Doping For Fuel Cell Material Design Based On Genetic Algorithms And Genetic Programming, Emrah Atilgan

Theses and Dissertations

Developing new materials have historically been time-consuming. Computational material discovery can search large design space to identify promising candidates for experimental verification. Recently, Density Functional Theory (DFT) based first principle calculation has been able to calculate many electrical and physical properties of materials, making them suitable for computational doping based material discovery. In material doping, given a base material, one can change its properties by substituting some elements with new ones or adding additional elements. In computational doping, we have a grid of atoms in a supercell, some of which can be substituted with dopant atoms. There are many possible …