Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Drone Detection Using Yolov5, Burchan Aydin, Subroto Singha Feb 2023

Drone Detection Using Yolov5, Burchan Aydin, Subroto Singha

Faculty Publications

The rapidly increasing number of drones in the national airspace, including those for recreational and commercial applications, has raised concerns regarding misuse. Autonomous drone detection systems offer a probable solution to overcoming the issue of potential drone misuse, such as drug smuggling, violating people’s privacy, etc. Detecting drones can be difficult, due to similar objects in the sky, such as airplanes and birds. In addition, automated drone detection systems need to be trained with ample amounts of data to provide high accuracy. Real-time detection is also necessary, but this requires highly configured devices such as a graphical processing unit (GPU). …


Power-Over-Tether Unmanned Aerial System Leveraged For Trajectory Influenced Atmospheric Sensing, Daniel Rico Aug 2021

Power-Over-Tether Unmanned Aerial System Leveraged For Trajectory Influenced Atmospheric Sensing, Daniel Rico

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

The use of unmanned aerial systems (UASs) in agriculture has risen in the past decade and is helping to modernize agriculture. UASs collect and elucidate data previously difficult to obtain and are used to help increase agricultural efficiency and production. Typical commercial off-the-shelf (COTS) UASs are limited by small payloads and short flight times. Such limits inhibit their ability to provide abundant data at multiple spatiotemporal scales. In this thesis, we describe the design and construction of the tethered aircraft unmanned system (TAUS), which is a novel power-over-tether UAS configured for long-term, high throughput atmospheric monitoring with an array of …


Aerial Flight Paths For Communication, Alisha Bevins Aug 2021

Aerial Flight Paths For Communication, Alisha Bevins

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

This body of work presents an iterative process of refinement to understand naive perception of communication using the motion of an unmanned aerial vehicle (UAV). This includes what people believe the UAV is trying to communicate, and how they expect to respond through physical action or emotional response. Previous work in this area sought to communicate without clear definitions of the states attempting to be conveyed. In an attempt to present more concrete states and better understand specific motion perception, this work goes through multiple iterations of state elicitation and label assignment. The lessons learned in this work will be …


Power-Over-Tether Uas Leveraged For Nearly-Indefinite Meteorological Data Acquisition, Daniel Rico, Carrick Detweiler, Francisco Muñoz-Arriola Jul 2020

Power-Over-Tether Uas Leveraged For Nearly-Indefinite Meteorological Data Acquisition, Daniel Rico, Carrick Detweiler, Francisco Muñoz-Arriola

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Use of unmanned aerial systems (UASs) in agriculture has risen in the past decade. These systems are key to modernizing agriculture. UASs collect and elucidate data previously difficult to obtain and used to help increase agricultural efficiency and production. Typical commercial off-the-shelf (COTS) UASs are limited by small payloads and short flight times. Such limits inhibit their ability to provide abundant data at multiple spatiotemporal scales. In this paper, we describe the design and construction of the tethered aircraft unmanned system (TAUS), which is a novel power-over-tether UAS leveraging the physical presence of the tether to launch multiple sensors along …


Domain Adaptation In Unmanned Aerial Vehicles Landing Using Reinforcement Learning, Pedro Lucas Franca Albuquerque Dec 2019

Domain Adaptation In Unmanned Aerial Vehicles Landing Using Reinforcement Learning, Pedro Lucas Franca Albuquerque

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Landing an unmanned aerial vehicle (UAV) on a moving platform is a challenging task that often requires exact models of the UAV dynamics, platform characteristics, and environmental conditions. In this thesis, we present and investigate three different machine learning approaches with varying levels of domain knowledge: dynamics randomization, universal policy with system identification, and reinforcement learning with no parameter variation. We first train the policies in simulation, then perform experiments both in simulation, making variations of the system dynamics with wind and friction coefficient, then perform experiments in a real robot system with wind variation. We initially expected that providing …


Development Of An Autonomous Aerial Toolset For Agricultural Applications, Terrance Life Oct 2019

Development Of An Autonomous Aerial Toolset For Agricultural Applications, Terrance Life

Mahurin Honors College Capstone Experience/Thesis Projects

According to the United Nations, the world population is expected to grow from its current 7 billion to 9.7 billion by the year 2050. During this time, global food demand is also expected to increase by between 59% and 98% due to the population increase, accompanied by an increasing demand for protein due to a rising standard of living throughout developing countries. [1] Meeting this increase in required food production using present agricultural practices would necessitate a similar increase in farmland; a resource which does not exist in abundance. Therefore, in order to meet growing food demands, new methods will …


Flying By Fire: Making Controlled Burns Safer For Humans And Uavs, Rebecca Horzewski, Carrick Detweiler Apr 2016

Flying By Fire: Making Controlled Burns Safer For Humans And Uavs, Rebecca Horzewski, Carrick Detweiler

UCARE Research Products

A temperature sensing circuit board was developed that will allow Nimbus Lab's controlled burn starting UAV to react to the temperatures around it.


Probabilistic Searching Using A Small Unmanned Aerial Vehicle, Steven R. Hansen, Timothy W. Mclain, Michael A. Goodrich May 2007

Probabilistic Searching Using A Small Unmanned Aerial Vehicle, Steven R. Hansen, Timothy W. Mclain, Michael A. Goodrich

Faculty Publications

Ground breaking concepts in optimal search theory were developed during World War II by the U.S. Navy. These concepts use an assumed detection model to calculate a detection probability rate and an optimal search allocation. Although this theory is useful in determining when and where search effort should be applied, it offers little guidance for the planning of search paths. This paper explains how search theory can be applied to path planning for an SUAV with a fixed CCD camera. Three search strategies are developed: greedy search, contour search, and composite search. In addition, the concepts of search efficiency and …


Learning Real-Time A* Path Planner For Unmanned Air Vehicle Target Sensing, Jason K. Howlett, Timothy W. Mclain, Michael A. Goodrich Mar 2006

Learning Real-Time A* Path Planner For Unmanned Air Vehicle Target Sensing, Jason K. Howlett, Timothy W. Mclain, Michael A. Goodrich

Faculty Publications

This paper presents a path planner for sensing closely-spaced targets from a fixed-wing unmanned air vehicle (UAV) having a specified sensor footprint. The planner is based on the learning real-time A* (LRTA*) search algorithm and produces dynamically feasible paths that accomplish the sensing objectives in the shortest possible distance. A tree of candidate paths that span the area of interest is created by assembling primitive turn and straight sections of a specified step size in a sequential fashion from the starting position of the UAV. An LRTA* search of the tree produces feasible paths any time during its execution and …


Autonomous Vehicle Technologies For Small Fixed-Wing Uavs, Randal Beard, Derek Kingston, Morgan Quigley, Deryl Snyder, Reed Christiansen, Walt Johnson, Timothy Mclain, Michael A. Goodrich Jan 2005

Autonomous Vehicle Technologies For Small Fixed-Wing Uavs, Randal Beard, Derek Kingston, Morgan Quigley, Deryl Snyder, Reed Christiansen, Walt Johnson, Timothy Mclain, Michael A. Goodrich

Faculty Publications

The objective of this paper is to describe the design and implementation of a small semi-autonomous fixed-wing unmanned air vehicle. In particular we describe the hardware and software architectures used in the design. We also describe a low weight, low cost autopilot developed at Brigham Young University and the algorithms associated with the autopilot. Novel PDA and voice interfaces to the UAV are described. In addition, we overview our approach to real-time path planning, trajectory generation, and trajectory tracking. The paper is augmented with movie files that demonstrate the functionality of the UAV and its control software.


Learning Real-Time A* Path Planner For Sensing Closely-Spaced Targets From An Aircraft, Jason K. Howlett, Michael A. Goodrich, Timothy W. Mclain Aug 2003

Learning Real-Time A* Path Planner For Sensing Closely-Spaced Targets From An Aircraft, Jason K. Howlett, Michael A. Goodrich, Timothy W. Mclain

Faculty Publications

This work develops an any-time path planner, based on the learning real-time A* (LRTA*) search, for generating flyable paths that allow an aircraft with a specified sensor footprint to sense a group of closely-spaced targets. The LRTA* algorithm searches a tree of flyable paths for the branch that accomplishes the desired objectives in the shortest distance. The tree of paths is created by assembling primitive turn and straight sections of a specified step size. The operating parameters for the LRTA* search directly influence the running time and path-length performance of the search. A modified LRTA* search is presented that terminates …