Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Development Of A Multi-Use Modular Microfluidic Platform Using 3d Printing, Carson Emeigh May 2024

Development Of A Multi-Use Modular Microfluidic Platform Using 3d Printing, Carson Emeigh

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Microfluidic lab-on-a-chip (LoC) technology has driven numerous innovations due to their ability to perform laboratory-scale experiments on a single chip using microchannels. Although LoC technology has been innovative, it still suffers from limitations related to its fabrication and design flexibility. Typical LoC fabrication, with photolithography, is time consuming, expensive, and inflexible. To overcome the limitations of LoC devices, modular microfluidic platforms have been developed where multiple microfluidic modules, each with a specific function or group of functions, can be combined on a single platform. Modular microfluidics have overcome some of the limitations of LoC devices, but currently, their fabrication is …


Vibration Alert Bracelet For Notification Of The Visually And Hearing Impaired, Kelsey Conley, Alex Foyer, Patrick Hara, Tom Janik, Jason Reichard, Jon D'Souza, Chandana Tamma, Cristinel Ababei Oct 2019

Vibration Alert Bracelet For Notification Of The Visually And Hearing Impaired, Kelsey Conley, Alex Foyer, Patrick Hara, Tom Janik, Jason Reichard, Jon D'Souza, Chandana Tamma, Cristinel Ababei

Electrical and Computer Engineering Faculty Research and Publications

This paper presents the prototype of an electronic vibration bracelet designed to help the visually and hearing impaired to receive and send emergency alerts. The bracelet has two basic functions. The first function is to receive a wireless signal and respond with a vibration to alert the user. The second function is implemented by pushing one button of the bracelet to send an emergency signal. We report testing on a prototype system formed by a mobile application and two bracelets. The bracelets and the application form a complete system intended to be used in retirement apartment communities. However, the system …


Improving 3d Printed Prosthetics With Sensors And Motors, Rachel Zarin Jul 2019

Improving 3d Printed Prosthetics With Sensors And Motors, Rachel Zarin

Honors Projects

A 3D printed hand and arm prosthetic was created from the idea of adding bionic elements while keeping the cost low. It was designed based on existing models, desired functions, and materials available. A tilt sensor keeps the hand level, two motors move the wrist in two different directions, a limit switch signals the fingers to open and close, and another motor helps open and close the fingers. All sensors and motors were built on a circuit board, programmed using an Arduino, and powered by a battery. Other supporting materials include metal brackets, screws, guitar strings, elastic bands, small clamps, …


3d Printed Smart Mobile, Bingfang Chen May 2019

3d Printed Smart Mobile, Bingfang Chen

Publications and Research

The goal of this research project is to design and build a prototype of a smart mobile robot to participate and compete in IEEE Micro-mouse and similar competitions. The robot has to find its way out of a maze as quickly as possible, by exploring and learning the paths in the maze. 3D printing technology will be used to build a lightweight robot frame so that it can move at a fast speed.


Custom 3d Printer And Resin For 18 Μm × 20 Μm Mi- Crofluidic Flow Channels, Hua Gong, Bryce P. Bickham, Adam T. Woolley, Gregory P. Nordin Jul 2017

Custom 3d Printer And Resin For 18 Μm × 20 Μm Mi- Crofluidic Flow Channels, Hua Gong, Bryce P. Bickham, Adam T. Woolley, Gregory P. Nordin

Faculty Publications

While there is great interest in 3D printing for microfluidic device fabrication, to-date the achieved feature sizes have not been in the truly microfluidic regime (μm). In this paper we demonstrate that a custom Digital Light Processor stereolithographic (DLP-SLA) 3D printer and a specifically-designed, low cost, custom resin can readily achieve flow channel cross sections as small as 18 μm × 20 μm. Our 3D printer has a projected image plane resolution of 7.6 μm and uses a 385 nm LED, which dramatically increases the available selection of UV absorbers for resin formulation compared to 3D printers with 405 nm …