Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering

New Jersey Institute of Technology

Theses/Dissertations

Deep learning

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Artificial Neural Networks And Their Applications To Intelligent Fault Diagnosis Of Power Transmission Lines, Fatemeh Mohammadi Shakiba Aug 2022

Artificial Neural Networks And Their Applications To Intelligent Fault Diagnosis Of Power Transmission Lines, Fatemeh Mohammadi Shakiba

Dissertations

Over the past thirty years, the idea of computing based on models inspired by human brains and biological neural networks emerged. Artificial neural networks play an important role in the field of machine learning and hold the key to the success of performing many intelligent tasks by machines. They are used in various applications such as pattern recognition, data classification, stock market prediction, aerospace, weather forecasting, control systems, intelligent automation, robotics, and healthcare. Their architectures generally consist of an input layer, multiple hidden layers, and one output layer. They can be implemented on software or hardware. Nowadays, various structures with …


Deep Learning On Image Forensics And Anti-Forensics, Zhangyi Shen May 2021

Deep Learning On Image Forensics And Anti-Forensics, Zhangyi Shen

Dissertations

Image forensics protect the authenticity and integrity of digital images. On the contrary, as the countermeasures of digital forensics, anti-forensics is applied to expose the vulnerability of forensics tools. Consequently, forensics researchers could develop forensics tools against possible new attacks. This dissertation investigation demonstrates two image forensics methods based on convolutional neural network (CNN) and two image anti-forensics methods based on generative adversarial network (GAN).

Detecting unsharp masking (USM) sharpened image is the first study in this dissertation. A CNN architecture comprises four convolutional layers and a classification module is proposed to discriminate sharpened images and unsharpened images. The results …


Human Activity Recognition Using Wearable Sensors: A Deep Learning Approach, Jialun Xue Dec 2020

Human Activity Recognition Using Wearable Sensors: A Deep Learning Approach, Jialun Xue

Theses

In the past decades, Human Activity Recognition (HAR) grabbed considerable research attentions from a wide range of pattern recognition and human–computer interaction researchers due to its prominent applications such as smart home health care. The wealth of information requires efficient classification and analysis methods. Deep learning represents a promising technique for large-scale data analytics. There are various ways of using different sensors for human activity recognition in a smartly controlled environment. Among them, physical human activity recognition through wearable sensors provides valuable information about an individual’s degree of functional ability and lifestyle. There is abundant research that works upon real …


Computational Intelligence In Steganography: Adaptive Image Watermarking, Xin Zhong Dec 2018

Computational Intelligence In Steganography: Adaptive Image Watermarking, Xin Zhong

Dissertations

Digital image watermarking, as an extension of traditional steganography, refers to the process of hiding certain messages into cover images. The transport image, called marked-image or stego-image, conveys the hidden messages while appears visibly similar to the cover-image. Therefore, image watermarking enables various applications such as copyright protection and covert communication. In a watermarking scheme, fidelity, capacity and robustness are considered as crucial factors, where fidelity measures the similarity between the cover- and marked-images, capacity measures the maximum amount of watermark that can be embedded, and robustness concerns the watermark extraction under attacks on the marked-image. Watermarking techniques are often …