Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering

PDF

Edith Cowan University

Research outputs 2014 to 2021

Series

Convolutional neural networks

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

A Sample Weight And Adaboost Cnn-Based Coarse To Fine Classification Of Fruit And Vegetables At A Supermarket Self-Checkout, Khurram Hameed, Douglas Chai, Alexander Rassau Jan 2020

A Sample Weight And Adaboost Cnn-Based Coarse To Fine Classification Of Fruit And Vegetables At A Supermarket Self-Checkout, Khurram Hameed, Douglas Chai, Alexander Rassau

Research outputs 2014 to 2021

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. The physical features of fruit and vegetables make the task of vision-based classification of fruit and vegetables challenging. The classification of fruit and vegetables at a supermarket self-checkout poses even more challenges due to variable lighting conditions and human factors arising from customer interactions with the system along with the challenges associated with the colour, texture, shape, and size of a fruit or vegetable. Considering this complex application, we have proposed a progressive coarse to fine classification technique to classify fruit and vegetables at supermarket checkouts. The image and weight of …


Review Of Deep Learning Methods In Robotic Grasp Detection, Shehan Caldera, Alexander Rassau, Douglas Chai Jan 2018

Review Of Deep Learning Methods In Robotic Grasp Detection, Shehan Caldera, Alexander Rassau, Douglas Chai

Research outputs 2014 to 2021

For robots to attain more general-purpose utility, grasping is a necessary skill to master. Such general-purpose robots may use their perception abilities to visually identify grasps for a given object. A grasp describes how a robotic end-effector can be arranged to securely grab an object and successfully lift it without slippage. Traditionally, grasp detection requires expert human knowledge to analytically form the task-specific algorithm, but this is an arduous and time-consuming approach. During the last five years, deep learning methods have enabled significant advancements in robotic vision, natural language processing, and automated driving applications. The successful results of these methods …