Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Civil Engineering

West Virginia University

Theses/Dissertations

FRP

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Frp Pedestrian Bridges, Joseph Ryan Virga Jan 2023

Frp Pedestrian Bridges, Joseph Ryan Virga

Graduate Theses, Dissertations, and Problem Reports

Advanced fiber-reinforced polymer (FRP) composites are being used as mainstream structural materials to build complex infrastructure systems. Such application of FRP composites can be attributed to their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance, higher energy absorption, durability, and competitive life-cycle costs. FRP composites are increasingly being considered as suitable alternative structural materials to traditional construction materials such as timber, concrete, and steel.

In this work, detailed experimental investigation has been carried out on different types of glass FRP composite pedestrian bridges with FRP and/or timber deck. Four full-scale FRP pedestrian bridges, including 70`×8.5’ and 70’×10’ single-span bridges, a 16’×8’ …


Strengthening Of Damaged Structural Members With External Frp, Krishna Tulasi Gadde Jan 2023

Strengthening Of Damaged Structural Members With External Frp, Krishna Tulasi Gadde

Graduate Theses, Dissertations, and Problem Reports

Fiber reinforced polymer (FRP) composites are excellent alternatives to traditional materials for civil infrastructure. Several researchers have worked on the application of FRP composites for construction, repair, and rehabilitation of structures. This research aims at evaluating the use of carbon, glass, basalt, and hybrid FRPs with epoxy and polyurethane resin systems for rehabilitation of damaged structural components. Following evaluations were carried out in this research: (i) tension testing of FRP coupons, (ii) compression testing of concrete cylinders with and without damaged sections/FRP reinforcements, (iii) flexural testing of external-FRP reinforced RC beams with and without damages, (iv) pull-off tests on FRP …


Feasibility Of Applying Motion Magnification In Subsurface Defect Detection For Concrete And Fiber-Reinforced Polymer Specimens, Nagavardhani Malineni Jan 2023

Feasibility Of Applying Motion Magnification In Subsurface Defect Detection For Concrete And Fiber-Reinforced Polymer Specimens, Nagavardhani Malineni

Graduate Theses, Dissertations, and Problem Reports

Irrespective of size and complexity, every civil infrastructure needs certain scrutiny regarding its structural health to ensure its serviceability during its lifetime. In olden times such scrutiny was done with the aid of destructive testing methods using sensors that required cumbersome and expensive installations and led to the destruction of at least part of the tested specimen. However, in recent times, many non-destructive methods, such as acoustic emission testing, electromagnetic testing, and laser testing methods have emerged, leaving the specified tested specimen undisturbed. With the advancement in sensor technology like motion magnification and with the help of access to high-speed …


A Parametric Study Of Lateral-Torsional Buckling In Pultruded Frp Beams Using Abaqus, Robert Nathaniel Baylor Jan 2021

A Parametric Study Of Lateral-Torsional Buckling In Pultruded Frp Beams Using Abaqus, Robert Nathaniel Baylor

Graduate Theses, Dissertations, and Problem Reports

Fiber Reinforced Polymer (FRP) composites continue to gain popularity in civil and mechanical infrastructure due to a high strength-to-weight ratio, corrosion-resistance, and low maintenance requirements. FRP can also fulfill niche roles requiring non-conductivity and magnetic transparency. The longitudinal forming of pultruded FRP makes it a natural choice for lightweight beams. Although FRP composites have a high strength for their weight, the elastic and shear moduli for glass FRP may only be 1/7 and 1/30 that of steel, respectively. These low stiffnesses make FRP composite beams particularly susceptible to lateral-torsional buckling (LTB). In addition, the low shear to elastic stiffness amplifies …


Detection Of Buried Non-Metallic (Plastic And Frp Composite) Pipes Using Gpr And Irt, Jonas Kavi Jan 2018

Detection Of Buried Non-Metallic (Plastic And Frp Composite) Pipes Using Gpr And Irt, Jonas Kavi

Graduate Theses, Dissertations, and Problem Reports

This research investigated alternative strategies for making buried non-metallic pipes (CFRP, GFRP, and PVC) easily locatable using Ground Penetrating Radar (GPR). Pipe diameters up to 12" and buried with up to 4 ft. of soil cover were investigated. The findings of this study will help address the detection problem of non-metallic pipelines and speed the adoption of composite pipes by the petroleum and natural gas industry. The research also investigated the possibility of locating buried pipes transporting hot fluids using Infrared Thermography (IRT).

Results from the study have shown that, using carbon fabric and aluminum tape overlay on non‑metallic pipes …