Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Civil Engineering

Missouri University of Science and Technology

Series

Carbon dioxide

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Influence Of Dynamic Factors On Nonwetting Fluid Snap-Off In Pores, Wen Deng, Matthew Balhoff, M. Bayani Cardenas Nov 2015

Influence Of Dynamic Factors On Nonwetting Fluid Snap-Off In Pores, Wen Deng, Matthew Balhoff, M. Bayani Cardenas

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Snap-off is an important dynamic multiphase flow phenomenon which occurs in porous media. It plays a dominant role in the residual trapping and mobilization/immobilization of nonwetting fluids such as hydrocarbons or CO₂. Current studies, applications, and threshold criteria of snap-off are mostly based on static or equilibrium conditions. Thus, the dynamics of snap-off which is relevant for many real world applications has rarely been systematically studied. While a static criterion indicates the snap-off potential for nonwetting fluids, the competition between the time required for snap-off and the local pore throat capillary number determines whether snap-off actually occurs. Using a theoretical …


Chemical And Hydrodynamic Mechanisms For Long-Term Geological Carbon Storage, Susan J. Altman, Wen Deng, For Full List Of Authors, See Publisher's Website. May 2014

Chemical And Hydrodynamic Mechanisms For Long-Term Geological Carbon Storage, Susan J. Altman, Wen Deng, For Full List Of Authors, See Publisher's Website.

Civil, Architectural and Environmental Engineering Faculty Research & Creative Works

Geological storage of CO₂ (GCS), also referred to as carbon sequestration, is a critical component for decreasing anthropogenic CO₂ atmospheric emissions. Stored CO₂ will exist as a supercritical phase, most likely in deep, saline, sedimentary reservoirs. Research at the Center for Frontiers of Subsurface Energy Security (CFSES), a Department of Energy, Energy Frontier Research Center, provides insights into the storage process. The integration of pore-scale experiments, molecular dynamics simulations, and study of natural analogue sites has enabled understanding of the efficacy of capillary, solubility, and dissolution trapping of CO₂ for GCS. Molecular dynamics simulations provide insight on relative wetting of …