Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Experimental Validation Of A Numerical Forward Model For Tunnel Detection Using Cross-Borehole Radar, Arvin Farid, Jose A. Martinez-Lorenzo, Akram N. Alshawabkeh, Carey M. Rappaport Dec 2012

Experimental Validation Of A Numerical Forward Model For Tunnel Detection Using Cross-Borehole Radar, Arvin Farid, Jose A. Martinez-Lorenzo, Akram N. Alshawabkeh, Carey M. Rappaport

Civil Engineering Faculty Publications and Presentations

The goal of this research is to develop an experimentally validated twodimensional (2D) finite difference frequency domain (FDFD) numerical forward model to study the potential of radar-based tunnel detection. Tunnel detection has become a subject of interest to the nation due to the use of tunnels by illegal immigrants, smugglers, prisoners, assailants, and terrorists. These concerns call for research to nondestructively detect, localize, and monitor tunnels. Nondestructive detection requires robust image reconstruction and inverse models, which in turn need robust forward models. Cross-Well Radar (CWR) modality is used for experimentation to avoid soil-air interface roughness. CWR is not a versatile …


Experimental Validation Of A Numerical Forward Model For Tunnel Detection Using Cross-Borehole Radar, Arvin Farid, Jose A. Martinez-Lorenzo, Akram N. Alshawabkeh, Carey M. Rappaport Apr 2012

Experimental Validation Of A Numerical Forward Model For Tunnel Detection Using Cross-Borehole Radar, Arvin Farid, Jose A. Martinez-Lorenzo, Akram N. Alshawabkeh, Carey M. Rappaport

Akram N. Alshawabkeh

The goal of this research is to develop an experimentally validated twodimensional (2D) finite difference frequency domain (FDFD) numerical forward model to study the potential of radar-based tunnel detection. Tunnel detection has become a subject of interest to the nation due to the use of tunnels by illegal immigrants, smugglers, prisoners, assailants, and terrorists. These concerns call for research to nondestructively detect, localize, and monitor tunnels. Nondestructive detection requires robust image reconstruction and inverse models, which in turn need robust forward models. Cross-Well Radar (CWR) modality is used for experimentation to avoid soil-air interface roughness. CWR is not a versatile …


Experimental Validation Of A Numerical Forward Model For Tunnel Detection Using Cross-Borehole Radar, Arvin Farid, Jose A. Martinez-Lorenzo, Akram N. Alshawabkeh, Carey M. Rappaport Apr 2012

Experimental Validation Of A Numerical Forward Model For Tunnel Detection Using Cross-Borehole Radar, Arvin Farid, Jose A. Martinez-Lorenzo, Akram N. Alshawabkeh, Carey M. Rappaport

Jose Martinez-Lorenzo

The goal of this research is to develop an experimentally validated twodimensional (2D) finite difference frequency domain (FDFD) numerical forward model to study the potential of radar-based tunnel detection. Tunnel detection has become a subject of interest to the nation due to the use of tunnels by illegal immigrants, smugglers, prisoners, assailants, and terrorists. These concerns call for research to nondestructively detect, localize, and monitor tunnels. Nondestructive detection requires robust image reconstruction and inverse models, which in turn need robust forward models. Cross-Well Radar (CWR) modality is used for experimentation to avoid soil-air interface roughness. CWR is not a versatile …


Experimental Validation Of A Numerical Forward Model For Tunnel Detection Using Cross-Borehole Radar, Arvin Farid, Jose A. Martinez-Lorenzo, Akram N. Alshawabkeh, Carey M. Rappaport Apr 2012

Experimental Validation Of A Numerical Forward Model For Tunnel Detection Using Cross-Borehole Radar, Arvin Farid, Jose A. Martinez-Lorenzo, Akram N. Alshawabkeh, Carey M. Rappaport

Carey Rappaport

The goal of this research is to develop an experimentally validated twodimensional (2D) finite difference frequency domain (FDFD) numerical forward model to study the potential of radar-based tunnel detection. Tunnel detection has become a subject of interest to the nation due to the use of tunnels by illegal immigrants, smugglers, prisoners, assailants, and terrorists. These concerns call for research to nondestructively detect, localize, and monitor tunnels. Nondestructive detection requires robust image reconstruction and inverse models, which in turn need robust forward models. Cross-Well Radar (CWR) modality is used for experimentation to avoid soil-air interface roughness. CWR is not a versatile …