Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Civil Engineering

PDF

2005

Cement

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Stabilization And Improvement Of Organic Soils, Joonho Hwang, Aaron Humphrey, Antonio Bobet, Maria Caterina Santagata Sep 2005

Stabilization And Improvement Of Organic Soils, Joonho Hwang, Aaron Humphrey, Antonio Bobet, Maria Caterina Santagata

JTRP Technical Reports

Peats and organic soils in general pose significant problems to geotechnical engineers due to their low strength, high compressibility and elevated creep. The research performed addressed one soil improving technique, deep soil mixing, that has been widely used for treating soft clays, but that especially in the US has found limited use in presence of organic soils. The work performed made use primarily of one soil sampled on Lindberg Road (LR) in West Lafayette, IN characterized by LOI= 45-52%, LL= 327%, PL= 162%, LLoven dried/LLnon-dried = 0.31, Gs = 2.05-2.12, fiber content ~2.29%, clay fraction = 40.6%. In addition, a …


Stabilization Of Residual Soil With Rice Husk Ash And Cement, Hilmi Mahmud Jul 2005

Stabilization Of Residual Soil With Rice Husk Ash And Cement, Hilmi Mahmud

Hilmi Mahmud

Stabilization of residual soils is studied by chemically using cement and rice husk ash. Investigation includes the evaluation of such properties of the soil as compaction, strength, and X-ray diffraction. Test results show that both cement and rice husk ash reduce the plasticity of soils. In term of compactability, addition of rice husk ash and cement decreases the maximum dry density and increases the optimum moisture content. From the viewpoint of plasticity, compaction and strength characteristics, and economy, addition of 6-8% cement and 10-15% rice husk ash is recommended as an optimum amount. © 2004 Elsevier Ltd. All rights reserved.