Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Computationally-Driven Insights Into The Ligand Environments Of Materials For Catalysis And Separations, Stephen Vicchio Dec 2023

Computationally-Driven Insights Into The Ligand Environments Of Materials For Catalysis And Separations, Stephen Vicchio

All Dissertations

Designing new catalytic and sorption materials is necessary to limit global temperature rise below 1.5 ◦C by 2050, while also meeting global energy demands. Climate change and energy production are not mutually exclusive; global population growth has direct impacts on global energy demands and climate. In both catalysis and adsorption applications, new technologies are needed to address these challenges. Catalysis can provide alternate, low-energy routes for converting low-value gases into higher-value chemical commodities, thus altering our current energy production. Likewise, new sorption materials can capture previously emitted CO2 from decades of energy production from fossil fuels, thus helping to …


Syntheses, Photophysics, & Application Of Porphyrinic Metal-Organic Frameworks, Zachary L. Magnuson Nov 2023

Syntheses, Photophysics, & Application Of Porphyrinic Metal-Organic Frameworks, Zachary L. Magnuson

USF Tampa Graduate Theses and Dissertations

Porphyrins are a group of heterocyclic macrocycles that play crucial roles in various biological processes such as electron transfer, catalysis, and sensing. Hemoglobin, which carries oxygen in the blood of mammals, and chlorophyll, which drives photosynthesis in plants and algae, are both porphyrins. The ability of porphyrins to bind metal ions and their unique electronic and photophysical properties make them an excellent platform for designing functional materials for various applications, often drawing inspiration from their function in nature. Metal-organic frameworks (MOFs) are a class of porous materials that have been extensively studied in recent years due to their high surface …


Separation Of Organic Acids Through Direct Catalysis From Sugars, Katelyn Robinson May 2023

Separation Of Organic Acids Through Direct Catalysis From Sugars, Katelyn Robinson

Chemical Engineering Undergraduate Honors Theses

Society relies on plastic products, whether they are single use or durable. A downside of plastic is that the most common type is a product of oil and oil is not only a limited resource but also a climate-damaging resource. Polylactic acid (PLA) is a bio-based, biodegradable plastic. However, the process of converting biomass to polylactic acid polymer has the largest environmental impact of the PLA production process, so alternative methods of conversion are needed (Moretti et al., 2021). The polylactic acid polymer can be made with lactic acid, which can be converted from glucose.


Synthesis Of A Series Of Trimeric Branched Glycoconjugates And Their Applications For Supramolecular Gels And Catalysis, Jonathan Bietsch, Anji Chen, Dan Wang, Guijun Wang Jan 2023

Synthesis Of A Series Of Trimeric Branched Glycoconjugates And Their Applications For Supramolecular Gels And Catalysis, Jonathan Bietsch, Anji Chen, Dan Wang, Guijun Wang

Chemistry & Biochemistry Faculty Publications

Carbohydrate-derived molecular gelators have found many practical applications as soft materials. To better understand the structure and molecular gelation relationship and further explore the applications of sugar-based gelators, we designed and synthesized eight trimeric branched sugar triazole derivatives and studied their self-assembling properties. These included glucose, glucosamine, galactose, and maltose derivatives. Interestingly, the gelation properties of these compounds exhibited correlations with the peripheral sugar structures. The maltose derivative did not form gels in the tested solvents, but all other compounds exhibited gelation properties in at least one of the solvents. Glucose derivatives showed superior performance, followed by glucosamine derivatives. They …


Ambient Ammonia Synthesis Via Microwave-Catalytic Materials And Plasma Chemistry, Siobhan Brown Jan 2023

Ambient Ammonia Synthesis Via Microwave-Catalytic Materials And Plasma Chemistry, Siobhan Brown

Graduate Theses, Dissertations, and Problem Reports

Ammonia is critical to supporting human life on earth because of its use as fertilizer. The Haber-Bosch process to produce ammonia has been practiced for over 100 years. This process operates at high pressure and temperature to overcome the thermodynamic and kinetic limitations of the ammonia synthesis reaction thus researchers have tried to overcome it for decades. At present this process represents 1% of global energy usage and 2.5% of global CO2 emissions. The proposed chemical looping ammonia synthesis approach seeks to reduce the environmental impact of this critical process and to elucidate microwave-catalytic principles.

This research aims to …