Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

Series

2022

Gas phase

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Mechanism For Selective Binding Of Aromatic Compounds On Oxygen-Rich Graphene Nanosheets Based On Molecule Size/Polarity Matching, Heyun Fu, Bingyu Wang, Dongqiang Zhu, Zhicheng Zhou, Shidong Bao, Xiaolei Qu, Yong Guo, Lan Ling, Shourong Zheng, Pu Duan, Jingdong Mao, Klaus Schmidt-Rohr, Shu Tao, Pedro J.J. Alvarez Jan 2022

Mechanism For Selective Binding Of Aromatic Compounds On Oxygen-Rich Graphene Nanosheets Based On Molecule Size/Polarity Matching, Heyun Fu, Bingyu Wang, Dongqiang Zhu, Zhicheng Zhou, Shidong Bao, Xiaolei Qu, Yong Guo, Lan Ling, Shourong Zheng, Pu Duan, Jingdong Mao, Klaus Schmidt-Rohr, Shu Tao, Pedro J.J. Alvarez

Chemistry & Biochemistry Faculty Publications

Selective binding of organic compounds is the cornerstone of many important industrial and pharmaceutical applications. Here, we achieved highly selective binding of aromatic compounds in aqueous solution and gas phase by oxygen-enriched graphene oxide (GO) nanosheets via a previously unknown mechanism based on size matching and polarity matching. Oxygen-containing functional groups (predominately epoxies and hydroxyls) on the nongraphitized aliphatic carbons of the basal plane of GO formed highly polar regions that encompass graphitic regions slightly larger than the benzene ring. This facilitated size match–based interactions between small apolar compounds and the isolated aromatic region of GO, resulting in high binding …


A Local Mode Study Of Ring Puckering Effects In The Infrared Spectra Of Cyclopentane, Edwin L. Sibert Iii, Peter F. Bernath Jan 2022

A Local Mode Study Of Ring Puckering Effects In The Infrared Spectra Of Cyclopentane, Edwin L. Sibert Iii, Peter F. Bernath

Chemistry & Biochemistry Faculty Publications

We report and interpret recently recorded high-resolution infrared spectra for the fundamentals of the CH2 scissors and CH stretches of gas phase cyclopentane at −26.1 and −50 C, respectively. We extend previous theoretical studies of this molecule, which is known to undergo barrierless pseudorotation due to ring puckering, by constructing local mode Hamiltonians of the stretching and scissor vibrations for which the frequencies, couplings, and linear dipoles are calculated as functions of the pseudorotation angle using B3LYP/6-311++(d,p) and MP2/cc-pVTZ levels of theory. Symmetrization (D5h) of the vibrational basis sets leads to simple vibration/pseudorotation Hamiltonians whose solutions …