Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

A Survey Of Blind Modulation Classification Techniques For Ofdm Signals, Anand Kumar, Sudhan Majhi, Guan Gui, Hsiao-Chun Wu, Chau Yuen Feb 2022

A Survey Of Blind Modulation Classification Techniques For Ofdm Signals, Anand Kumar, Sudhan Majhi, Guan Gui, Hsiao-Chun Wu, Chau Yuen

Faculty Publications

Blind modulation classification (MC) is an integral part of designing an adaptive or intelligent transceiver for future wireless communications. Blind MC has several applications in the adaptive and automated systems of sixth generation (6G) communications to improve spectral efficiency and power efficiency, and reduce latency. It will become a integral part of intelligent software-defined radios (SDR) for future communication. In this paper, we provide various MC techniques for orthogonal frequency division multiplexing (OFDM) signals in a systematic way. We focus on the most widely used statistical and machine learning (ML) models and emphasize their advantages and limitations. The statistical-based blind …


Chimeranet: U-Net For Hair Detection In Dermoscopic Skin Lesion Images, Norsang Lama, Reda Kasmi, Jason R. Hagerty, R. Joe Stanley, Reagan Harris Young, Jessica Miinch, Januka Nepal, Anand Nambisan, William V. Stoecker Jan 2022

Chimeranet: U-Net For Hair Detection In Dermoscopic Skin Lesion Images, Norsang Lama, Reda Kasmi, Jason R. Hagerty, R. Joe Stanley, Reagan Harris Young, Jessica Miinch, Januka Nepal, Anand Nambisan, William V. Stoecker

Electrical and Computer Engineering Faculty Research & Creative Works

Hair and ruler mark structures in dermoscopic images are an obstacle preventing accurate image segmentation and detection of critical network features. Recognition and removal of hairs from images can be challenging, especially for hairs that are thin, overlapping, faded, or of similar color as skin or overlaid on a textured lesion. This paper proposes a novel deep learning (DL) technique to detect hair and ruler marks in skin lesion images. Our proposed ChimeraNet is an encoder-decoder architecture that employs pretrained EfficientNet in the encoder and squeeze-and-excitation residual (SERes) structures in the decoder. We applied this approach at multiple image sizes …