Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Enhanced Cell Viability And Migration Of Primary Bovine Annular Fibrosus Fibroblast-Like Cells Induced By Microsecond Pulsed Electric Field Exposure, Prince M. Atsu, Connor Mowen, Gary L. Thompson Iii Sep 2023

Enhanced Cell Viability And Migration Of Primary Bovine Annular Fibrosus Fibroblast-Like Cells Induced By Microsecond Pulsed Electric Field Exposure, Prince M. Atsu, Connor Mowen, Gary L. Thompson Iii

Henry M. Rowan College of Engineering Faculty Scholarship

This study is the first to report the enhancement of cell migration and proliferation induced by in vitro microsecond pulsed electric field (μsPEF) exposure of primary bovine annulus fibrosus (AF) fibroblast-like cells. AF primary cells isolated from fresh bovine intervertebral disks (IVDs) are exposed to 10 and 100 μsPEFs with different numbers of pulses and applied electric field strengths. The results indicate that 10 μs-duration pulses induce reversible electroporation, while 100 μs pulses induce irreversible electroporation of the cells. Additionally, μsPEF exposure increased AF cell proliferation up to 150% while increasing the average migration speed by 0.08 μm/min over 24 …


Silk-Cellulose Acetate Biocomposite Materials Regenerated From Ionic Liquid, Ashley Rivera-Galetti, Chrtstopher R. Gough, Farhan Kaleem, Michael Burch, Chris Ratcliffe, Ping Lu, David Salas-De La Cruz, Xiao Hu Aug 2021

Silk-Cellulose Acetate Biocomposite Materials Regenerated From Ionic Liquid, Ashley Rivera-Galetti, Chrtstopher R. Gough, Farhan Kaleem, Michael Burch, Chris Ratcliffe, Ping Lu, David Salas-De La Cruz, Xiao Hu

Faculty Scholarship for the College of Science & Mathematics

The novel use of ionic liquid as a solvent for biodegradable and natural organic biomaterials has increasingly sparked interest in the biomedical field. As compared to more volatile traditional solvents that rapidly degrade the protein molecular weight, the capability of polysaccharides and proteins to dissolve seamlessly in ionic liquid and form fine and tunable biomaterials after regeneration is the key interest of this study. Here, a blended system consisting of Bombyx Mori silk fibroin protein and a cellulose derivative, cellulose acetate (CA), in the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc) was regenerated and underwent characterization to understand the structure and physical …


Flexible Nanopaper Composed Of Wood-Derived Nanofibrillated Cellulose And Graphene Building Blocks, Qing Li, Ming Dai, Xueren Qian, Tian Liu, Zhenbo Liu, Yu Liu, Ming Chen, Wang He, Suqing Zeng, Yu Meng, Chenchen Dai, Jing Shen, Yingtao Liu, Wenshuai Chen, Wenbo Liu, Ping Lu Jan 2021

Flexible Nanopaper Composed Of Wood-Derived Nanofibrillated Cellulose And Graphene Building Blocks, Qing Li, Ming Dai, Xueren Qian, Tian Liu, Zhenbo Liu, Yu Liu, Ming Chen, Wang He, Suqing Zeng, Yu Meng, Chenchen Dai, Jing Shen, Yingtao Liu, Wenshuai Chen, Wenbo Liu, Ping Lu

Faculty Scholarship for the College of Science & Mathematics

Nanopaper has attracted considerable interest in the fields of films and paper research. However, the challenge of integrating the many advantages of nanopaper still remains. Herein, we developed a facile strategy to fabricate multifunctional nanocomposite paper (NGCP) composed of wood-derived nanofibrillated cellulose (NFC) and graphene as building blocks. NFC suspension was consisted of long and entangled NFCs (10–30 nm in width) and their aggregates. Before NGCP formation, NFC was chemically modified with a silane coupling agent to ensure that it could interact strongly with graphene in NGCP. The resulting NGCP samples were flexible and could be bent repeatedly without any …


Carbide-Derived Carbon By Electrochemical Etching Of Vanadium Carbides, Luis G.B. Camargo, Benjamin G. Palazzo, Greg Taylor, Zach A. Norris, Yash K. Patel, Jeffrey D. Hettinger, Lei Yu Aug 2015

Carbide-Derived Carbon By Electrochemical Etching Of Vanadium Carbides, Luis G.B. Camargo, Benjamin G. Palazzo, Greg Taylor, Zach A. Norris, Yash K. Patel, Jeffrey D. Hettinger, Lei Yu

Faculty Scholarship for the College of Science & Mathematics

Carbide-derived Carbon (CDC) has been demonstrated to be an excellent electrode material for electrochemical devices including supercapacitors due to its chemical and electrochemical stability, large specific surface area and controllable pore size and morphology. Currently, CDC is prepared from metal carbides by chlorination in a chlorine gas atmosphere at temperatures of 350°C or higher. In this paper, conversion using electrochemical methods is reported, which can be achieved by oxidizing vanadium carbides (VC or V2C) in aqueous solutions at room temperature and a mild electrode potential to prepare CDC thin film as electrode materials for “on-chip” supercapacitiors. It was …