Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Optimizing Hydrogen Sulfide Removal And Biogas Production Using The Water Wash Method, Brian Leightner Dec 2019

Optimizing Hydrogen Sulfide Removal And Biogas Production Using The Water Wash Method, Brian Leightner

Theses and Dissertations

Biogas forms from decomposing organic material in agricultural digesters, landfills, and wastewater treatment plant digesters. Biogas is mostly composed of methane, and can be used as a carbon-based fuel. Microorganisms that consume organics in these waste streams also produce hydrogen sulfide (H2S) as part of the biogas, in varying trace amounts. H2S is corrosive to engines and pipes for machinery, a human health hazard when inhaled, and an aquatic hazard when dissolved in water. Water washing is an absorption process that dissolves hydrogen sulfide and other water soluble compounds in this process and carries it away from the gas, thereby …


In Situ Chemical Probing Of Vacancy Defects In Graphene And Boron Nitride At Room Temperature, Ali Ihsan Altan May 2019

In Situ Chemical Probing Of Vacancy Defects In Graphene And Boron Nitride At Room Temperature, Ali Ihsan Altan

Theses and Dissertations

IN SITU CHEMICAL PROBING OF VACANCY DEFECTS IN GRAPHENE AND BORON NITRIDE AT ROOM TEMPERATURE

by

Ali Ihsan Altan

The University of Wisconsin-Milwaukee, 2019

Under the Supervision of Professor Jian Chen

Chemical vapor deposition (CVD) has emerged as the most promising technique towards manufacturing of large area, high quality graphene. Characterization, understanding, and controlling of various structural defects in CVD-grown graphene are essential to realize its true potential for real-world applications. We report a new method for in situ chemical probing of vacancy defects in CVD-grown graphene at room temperature. Our approach is based on a solid–gas phase reaction that …


In Situ Chemical Probing Of Vacancy Defects In Graphene And Boron Nitride At Room Temperature, Ali Ihsan Altan May 2019

In Situ Chemical Probing Of Vacancy Defects In Graphene And Boron Nitride At Room Temperature, Ali Ihsan Altan

Theses and Dissertations

IN SITU CHEMICAL PROBING OF VACANCY DEFECTS IN GRAPHENE AND BORON NITRIDE AT ROOM TEMPERATURE

by

Ali Ihsan Altan

The University of Wisconsin-Milwaukee, 2019

Under the Supervision of Professor Jian Chen

Chemical vapor deposition (CVD) has emerged as the most promising technique towards manufacturing of large area, high quality graphene. Characterization, understanding, and controlling of various structural defects in CVD-grown graphene are essential to realize its true potential for real-world applications. We report a new method for in situ chemical probing of vacancy defects in CVD-grown graphene at room temperature. Our approach is based on a solid–gas phase reaction that …


Active Polymeric Materials For 3d Shaping And Sensing, Adebola Oyefusi May 2019

Active Polymeric Materials For 3d Shaping And Sensing, Adebola Oyefusi

Theses and Dissertations

Part I: Reprogrammable Chemical 3D Shaping for Origami, Kirigami, and Reconfigurable Molding

Origami- and kirigami-based design principles have recently received strong interest from the scientific and engineering communities because they offer fresh approaches to engineering of structural hierarchy and adaptive functions in materials, which could lead to many promising applications. Herein, we present a reprogrammable 3D chemical shaping strategy for creating a wide variety of stable complex origami and kirigami structures autonomously. This strategy relies on a reverse patterning method that encodes prescribed 3D geometric information as a spatial pattern of the unlocked phase (dispersed phase) in the locked phase …