Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Engineering Stimuli-Responsive Polymeric Nanoassemblies: Rational Designs For Intracellular Delivery Of Biologics, Kingshuk Dutta Dec 2020

Engineering Stimuli-Responsive Polymeric Nanoassemblies: Rational Designs For Intracellular Delivery Of Biologics, Kingshuk Dutta

Doctoral Dissertations

Biologic drugs have gained enormous research attention in recent years as reflected by the development of multiple candidates to the clinical pipelines and an increased percentage of FDA approval. This is reasoned by the fact that biologics have been proven to deliver more predictive and promising benefits for many hard-to-cure diseases by ‘drugging the undruggable’ targets. However, the challenges associated with biologic drug development are multi-fold, viz, poor encapsulation efficacy, systemic instability, low cellular internalization and endosomal escape capability. Thus, it is essential to develop new molecular strategies that can not only address the associated drug delivery challenges, but also …


Theory And Improved Methods For Probing The Cavitation To Fracture Transition, Christopher Barney Dec 2020

Theory And Improved Methods For Probing The Cavitation To Fracture Transition, Christopher Barney

Doctoral Dissertations

A material is considered soft when its bulk modulus is significantly greater than its shear modulus. Rubbery polymers are a class of soft materials where resistance to extension is mainly entropic in nature. Polymeric soft solids differ from liquids due to the presence of a percolated network of strong bonds that resist deformation and flow on a given time scale. The incompressible nature, entropically driven elasticity, and molecular scale network structure of soft polymeric solids combine to impart unique mechanical behavior that often results in complex material responses to simple loading situations. An important example of this is cavitation in …


Molecular Design Of Organic Semiconductors For Interfacial And Emissive Material Applications, Marcus David Cole Mar 2020

Molecular Design Of Organic Semiconductors For Interfacial And Emissive Material Applications, Marcus David Cole

Doctoral Dissertations

This dissertation describes the synthesis and characterization of functional optoelectronically active materials. Synthetic techniques were used to prepare polymers containing perylene diimide (PDI) or tetraphenylethylene (TPE) moieties in the polymer backbone. PDI-based structures were prepared with embedded cationic or zwitterionic moieties intended to tailor organic/inorganic interfaces in thin film photovoltaic devices. The aggregation-induced emission (AIE)-active TPE polymers were synthesized to study how AIE properties evolve in π-conjugated polymers. The syntheses discussed here focused on modulation of molecular architecture to give rise to materials with tailored optoelectronic properties. Chapter 1 provides a brief overview of the field of organic electronics and …