Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Silk-Cellulose Acetate Biocomposite Materials Regenerated From Ionic Liquid, Ashley Rivera-Galetti, Chrtstopher R. Gough, Farhan Kaleem, Michael Burch, Chris Ratcliffe, Ping Lu, David Salas-De La Cruz, Xiao Hu Aug 2021

Silk-Cellulose Acetate Biocomposite Materials Regenerated From Ionic Liquid, Ashley Rivera-Galetti, Chrtstopher R. Gough, Farhan Kaleem, Michael Burch, Chris Ratcliffe, Ping Lu, David Salas-De La Cruz, Xiao Hu

Faculty Scholarship for the College of Science & Mathematics

The novel use of ionic liquid as a solvent for biodegradable and natural organic biomaterials has increasingly sparked interest in the biomedical field. As compared to more volatile traditional solvents that rapidly degrade the protein molecular weight, the capability of polysaccharides and proteins to dissolve seamlessly in ionic liquid and form fine and tunable biomaterials after regeneration is the key interest of this study. Here, a blended system consisting of Bombyx Mori silk fibroin protein and a cellulose derivative, cellulose acetate (CA), in the ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc) was regenerated and underwent characterization to understand the structure and physical …


Flexible Nanopaper Composed Of Wood-Derived Nanofibrillated Cellulose And Graphene Building Blocks, Qing Li, Ming Dai, Xueren Qian, Tian Liu, Zhenbo Liu, Yu Liu, Ming Chen, Wang He, Suqing Zeng, Yu Meng, Chenchen Dai, Jing Shen, Yingtao Liu, Wenshuai Chen, Wenbo Liu, Ping Lu Jan 2021

Flexible Nanopaper Composed Of Wood-Derived Nanofibrillated Cellulose And Graphene Building Blocks, Qing Li, Ming Dai, Xueren Qian, Tian Liu, Zhenbo Liu, Yu Liu, Ming Chen, Wang He, Suqing Zeng, Yu Meng, Chenchen Dai, Jing Shen, Yingtao Liu, Wenshuai Chen, Wenbo Liu, Ping Lu

Faculty Scholarship for the College of Science & Mathematics

Nanopaper has attracted considerable interest in the fields of films and paper research. However, the challenge of integrating the many advantages of nanopaper still remains. Herein, we developed a facile strategy to fabricate multifunctional nanocomposite paper (NGCP) composed of wood-derived nanofibrillated cellulose (NFC) and graphene as building blocks. NFC suspension was consisted of long and entangled NFCs (10–30 nm in width) and their aggregates. Before NGCP formation, NFC was chemically modified with a silane coupling agent to ensure that it could interact strongly with graphene in NGCP. The resulting NGCP samples were flexible and could be bent repeatedly without any …