Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

PDF

Series

2016

Institution
Keyword
Publication

Articles 1 - 30 of 39

Full-Text Articles in Engineering

Enhancements In Localized Classification For Uterine Cervical Cancer Digital Histology Image Assessment, Peng Guo, Haidar A. Almubarak, Koyel Banerjee, R. Joe Stanley, L. Rodney Long, Sameer K. Antani, George R. Thoma, Rosemary E. Zuna, Shelliane R. Frazier, Randy Hays Moss, William V. Stoecker Dec 2016

Enhancements In Localized Classification For Uterine Cervical Cancer Digital Histology Image Assessment, Peng Guo, Haidar A. Almubarak, Koyel Banerjee, R. Joe Stanley, L. Rodney Long, Sameer K. Antani, George R. Thoma, Rosemary E. Zuna, Shelliane R. Frazier, Randy Hays Moss, William V. Stoecker

Electrical and Computer Engineering Faculty Research & Creative Works

Background: In previous research, we introduced an automated, localized, fusion-based approach for classifying uterine cervix squamous epithelium into Normal, CIN1, CIN2, and CIN3 grades of cervical intraepithelial neoplasia (CIN) based on digitized histology image analysis. As part of the CIN assessment process, acellular and atypical cell concentration features were computed from vertical segment partitions of the epithelium region to quantize the relative distribution of nuclei.

Methods: Feature data was extracted from 610 individual segments from 61 images for epithelium classification into categories of Normal, CIN1, CIN2, and CIN3. The classification results were compared against CIN labels obtained from two pathologists …


Conformationally Superarmed S-Ethyl Glycosyl Donors As Effective Building Blocks For Chemoselective Oligosaccharide Synthesis In One Pot, Mithila Bandara, Jagodige Yasomanee, Nigam Rath, Christian Pedersen, Mikael Bols, Alexei Demchenko Nov 2016

Conformationally Superarmed S-Ethyl Glycosyl Donors As Effective Building Blocks For Chemoselective Oligosaccharide Synthesis In One Pot, Mithila Bandara, Jagodige Yasomanee, Nigam Rath, Christian Pedersen, Mikael Bols, Alexei Demchenko

Chemistry & Biochemistry Faculty Works

A new series of superarmed glycosyl donors has been investigated. It was demonstrated that the S-ethyl leaving group allows for high reactivity, which is much higher than that of equally equipped S-phenyl glycosyl donors that were previously investigated by our groups. The superarmed S-ethyl glycosyl donors equipped with a 2-O-benzoyl group gave complete β-stereoselectivity. Utility of the new glycosyl donors has been demonstrated in a one-pot one-addition oligosaccharide synthesis with all of the reaction components present from the beginning.


Spray Printing Of Organic Semiconducting Single Crystals, Grigorios-Panagiotis Rigas, Marcia M. Payne, John E. Anthony, Peter N. Horton, Fernando A. Castro, Maxim Shkunov Nov 2016

Spray Printing Of Organic Semiconducting Single Crystals, Grigorios-Panagiotis Rigas, Marcia M. Payne, John E. Anthony, Peter N. Horton, Fernando A. Castro, Maxim Shkunov

Chemistry Faculty Publications

Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by …


Peridynamic Modeling Of Ruptures In Biomembranes, Michael Taylor, Irep Gözen, Samir Patel, Aldo Jesorka, Katia Bertoldi Nov 2016

Peridynamic Modeling Of Ruptures In Biomembranes, Michael Taylor, Irep Gözen, Samir Patel, Aldo Jesorka, Katia Bertoldi

Mechanical Engineering

We simulate the formation of spontaneous ruptures in supported phospholipid double bilayer membranes, using peridynamic modeling. Experiments performed on spreading double bilayers typically show two distinct kinds of ruptures, floral and fractal, which form spontaneously in the distal (upper) bilayer at late stages of double bilayer formation on high energy substrates. It is, however, currently unresolved which factors govern the occurrence of either rupture type. Variations in the distance between the two bilayers, and the occurrence of interconnections (“pinning sites”) are suspected of contributing to the process. Our new simulations indicate that the pinned regions which form, presumably due to …


Evolution From The Plasmon To Exciton State In Ligand-Protected Atomically Precise Gold Nanoparticles, Meng Zhou, Chenjie Zeng, Yuxiang Chen, Shuo Zhao, Matthew Y. Sfeir, Manzhou Zhu, Rongchao Jin Oct 2016

Evolution From The Plasmon To Exciton State In Ligand-Protected Atomically Precise Gold Nanoparticles, Meng Zhou, Chenjie Zeng, Yuxiang Chen, Shuo Zhao, Matthew Y. Sfeir, Manzhou Zhu, Rongchao Jin

Publications and Research

The evolution from the metallic (or plasmonic) to molecular state in metal nanoparticles constitutes a central question in nanoscience research because of its importance in revealing the origin of metallic bonding and offering fundamental insights into the birth of surface plasmon resonance. Previous research has not been able to probe the transition due to the unavailability of atomically precise nanoparticles in the 1-3 nm size regime. Herein, we investigate the transition by performing ultrafast spectroscopic studies on atomically precise thiolate-protected Au25, Au38, Au144, Au333, Au∼520 and Au∼940 nanoparticles. Our results …


Recent Approaches In Designing Bioadhesive Materials Inspired By Mussel Adhesive Protein, Pegah Kord Forooshani, Bruce P. Lee Oct 2016

Recent Approaches In Designing Bioadhesive Materials Inspired By Mussel Adhesive Protein, Pegah Kord Forooshani, Bruce P. Lee

Department of Biomedical Engineering Publications

Marine mussels secret protein-based adhesives, which enable them to anchor to various surfaces in a saline, intertidal zone. Mussel foot proteins (Mfps) contain a large abundance of a unique, catecholic amino acid, Dopa, in their protein sequences. Catechol offers robust and durable adhe-sion to various substrate surfaces and contributes to the curing of the adhesive plaques. In this article, we review the unique features and the key functionalities of Mfps, catechol chemistry, and strategies for preparing catechol-functionalized poly- mers. Specifically, we reviewed recent findings on the contributions of various features of Mfps on interfacial binding, which include coacervate formation, surface …


Effect Of Surface Treatment On Liquid Adhesion Inside 3-D Structures, Madani A. Khan, Jeffrey Alston, Andrew Guenthner, Jacob Zavala Oct 2016

Effect Of Surface Treatment On Liquid Adhesion Inside 3-D Structures, Madani A. Khan, Jeffrey Alston, Andrew Guenthner, Jacob Zavala

STAR Program Research Presentations

This study explores the relationship between chemical surface treatments on the interior of glass tubes and their resistance to fluid flow. By treating the interior of the tubes with functional silanes we can decrease or increase the interaction of the tube walls with the fluid column, which translates to changes in fluid column height for a given pressure differential. Resistance to fluid flow is quantified by using the tubes as integral parts of a barometric pressure column and measuring the changes in column height as the fluid is pulled into the tube by a set pressure differential. The barometric pressure …


Preface-Jes Focus Issue On Electrolysis For Increased Renewable Energy Penetration, B. Pivovar, M. Carmo, K. Ayers, X. Zhang, J. O'Brien Oct 2016

Preface-Jes Focus Issue On Electrolysis For Increased Renewable Energy Penetration, B. Pivovar, M. Carmo, K. Ayers, X. Zhang, J. O'Brien

Mechanical & Aerospace Engineering Faculty Publications

(First paragraph) Today represents a particularly exciting time, as our planet’s energy system is undergoing major changes due to dramatically decreasing renewable energy prices and increasing societal concerns over greenhouse gas emissions, criteria pollutants (arsenic, mercury, NOx, particulate matter), and climate change. These factors are pushing society toward deep decarbonization of our energy system, perhaps the most challenging issue facing the planet today. Unfortunately, wind and solar energy, while both promising generation sources, come with intermittency challenges and have limitations in their abilities to impact industrial and transportation sector demands where fossil fuel energy carriers based on chemical bonds have …


Metal-Organic Hybrid Nanocomposites For Energy Harvesting Applications, Thulitha Madawa Abeywickrama Oct 2016

Metal-Organic Hybrid Nanocomposites For Energy Harvesting Applications, Thulitha Madawa Abeywickrama

Masters Theses & Specialist Projects

Various synthetic methods have been developed to produce metal nanostructures including copper and iron nanostructures. Modification of nanoparticle surface to enhance their characteristic properties through surface functionalization with organic ligands ranging from small molecules to polymeric materials including organic semiconducting polymers is a key interest in nanoscience. However, most of the synthetic methods developed in the past depend widely on non-aqueous solvents, toxic reducing agents, and high temperature and high-pressure conditions. Therefore, to produce metal nanostructures and their nanocomposites with a simpler and greener method is indeed necessary and desirable for their nano-scale applications. Hence the objective of this thesis …


An Unexpected Restructuring Of Combustion Soot Aggregates By Subnanometer Coatings Of Polycyclic Aromatic Hydrocarbons, Chao Chen, Xiaolong Fan, Tasneem Shaltout, Chong Qiu, Yan Ma, Andrew Goldman, Alexei F. Khalizov Oct 2016

An Unexpected Restructuring Of Combustion Soot Aggregates By Subnanometer Coatings Of Polycyclic Aromatic Hydrocarbons, Chao Chen, Xiaolong Fan, Tasneem Shaltout, Chong Qiu, Yan Ma, Andrew Goldman, Alexei F. Khalizov

Chemistry and Chemical Engineering Faculty Publications

We investigated the effect of thin polycyclic aromatic hydrocarbon (PAH) coatings on the structure of soot aggregates. Soot aerosol from an inverted diffusion burner was size classified, thermally denuded, coated with six different PAHs, and then characterized using scanning electron microscopy, light scattering, and mass-mobility measurements. Contrary to our expectation, significant restructuring was observed in the presence of subnanometer layers of pyrene, fluoranthene, and phenanthrene. These PAHs remained in subcooled liquid state in thin films, whereby the liquid layer acted as a lubricant, reducing the force required to initiate the restructuring. Thin layers of PAH of higher melting temperatures (perylene, …


Grain Boundary Induced Bias Instability In Soluble Acene-Based Thin-Film Transistors, Ky V. Nguyen, Marcia M. Payne, John E. Anthony, Jung Hun Lee, Eunjoo Song, Boseok Kang, Kilwon Cho, Wi Hyoung Lee Sep 2016

Grain Boundary Induced Bias Instability In Soluble Acene-Based Thin-Film Transistors, Ky V. Nguyen, Marcia M. Payne, John E. Anthony, Jung Hun Lee, Eunjoo Song, Boseok Kang, Kilwon Cho, Wi Hyoung Lee

Chemistry Faculty Publications

Since the grain boundaries (GBs) within the semiconductor layer of organic field-effect transistors (OFETs) have a strong influence on device performance, a substantial number of studies have been devoted to controlling the crystallization characteristics of organic semiconductors. We studied the intrinsic effects of GBs within 5,11-bis(triethylsilylethynyl) anthradithiophene (TES-ADT) thin films on the electrical properties of OFETs. The GB density was easily changed by controlling nulceation event in TES-ADT thin films. When the mixing time was increased, the number of aggregates in as-spun TES-ADT thin films were increased and subsequent exposure of the films to 1,2-dichloroethane vapor led to a significant …


Gc Verification Of The Spacecraft Atmosphere Monitor, Jessica S. Castro, Richard D. Kidd, Jeffrey D. Hein Sep 2016

Gc Verification Of The Spacecraft Atmosphere Monitor, Jessica S. Castro, Richard D. Kidd, Jeffrey D. Hein

STAR Program Research Presentations

International Space Station crew members face the unique challenge of maintaining air quality due to the volatile organic compounds (VOCs) that have the potential to accumulate at unsafe levels. The Spacecraft Atmosphere Monitor (SAM) is a miniature gas chromatograph/mass spectrometer (GCMS) designed to measure major constituents (such as N2, O2 and CO2) and trace VOCs within the cabin of the spacecraft. The gas chromatograph is responsible for separating the sample into its components in order to be characterized. The oven of the gas chromatograph must reach a temperature of 150°C in order to heat constituents …


Capture And Recycle Of Industrial Co2 Emissions Using Mircoalgae, Michael H. Wilson, Daniel T. Mohler, John G. Groppo, Thomas E. Grubbs, Stephanie Kesner, E. Molly Frazar, Aubrey Shea, Czarena L. Crofcheck, Mark Crocker Sep 2016

Capture And Recycle Of Industrial Co2 Emissions Using Mircoalgae, Michael H. Wilson, Daniel T. Mohler, John G. Groppo, Thomas E. Grubbs, Stephanie Kesner, E. Molly Frazar, Aubrey Shea, Czarena L. Crofcheck, Mark Crocker

Center for Applied Energy Research Faculty and Staff Publications

A novel cyclic flow photobioreactor (PBR) for the capture and recycle of CO2 using microalgae was designed and deployed at a coal-fired power plant (Duke Energy’s East Bend Station). The PBR was operated continuously during the period May–September 2015, during which algae productivity of typically 0.1–0.2 g/(L day) was obtained. Maximum CO2 capture efficiency was achieved during peak sunlight hours, the largest recorded CO2 emission reduction corresponding to a value of 81 % (using a sparge time of 5 s/min). On average, CO2 capture efficiency during daylight hours was 44 %. The PBR at East Bend …


Using In Situ Liquid Single Photon Ionization Mass Spectrometry (Spi-Ms) To Probe Lithium Polysulfide Electrolyte In Motion, Aala M. Al Hasan, Jiachao Yu, Juan Yao, Vijayakumar Murugesan, Manjula Nandasiri, Xiao-Ying Yu Aug 2016

Using In Situ Liquid Single Photon Ionization Mass Spectrometry (Spi-Ms) To Probe Lithium Polysulfide Electrolyte In Motion, Aala M. Al Hasan, Jiachao Yu, Juan Yao, Vijayakumar Murugesan, Manjula Nandasiri, Xiao-Ying Yu

STAR Program Research Presentations

The solid-liquid (s-l) interface is the most common interface encountered in electrochemical systems. The s-l interface has wide applications in energy storage, catalysis, and material sciences. In situ studies of chemical reactions taking place on the s-l interfaces can further our understanding of electron transfer and link to real-world device functions under challenging conditions. Direct probing of the solid electrode and liquid electrolyte interface has been realized using a vacuum compatible electrochemical microfluidic reactor, system for analysis at the liquid vacuum interface (SALVI) with time-of-flight secondary ion mass spectrometry (ToF-SIMS). Most recently, the electrochemical version of SALVI was integrated to …


Multiple New-Particle Growth Pathways Observed At The Us Doe Southern Great Plains Field Site, Anna L. Hodshire, Michael J. Lawler, Jun Zhao, John Ortega, Coty Jen, Taina Yli-Juuti, Jared F. Brewer, Jack K. Kodros, Kelley C. Barsanti, Dave R. Hanson, Peter H. Mcmurry, James N. Smith, Jeffery R. Pierce Jul 2016

Multiple New-Particle Growth Pathways Observed At The Us Doe Southern Great Plains Field Site, Anna L. Hodshire, Michael J. Lawler, Jun Zhao, John Ortega, Coty Jen, Taina Yli-Juuti, Jared F. Brewer, Jack K. Kodros, Kelley C. Barsanti, Dave R. Hanson, Peter H. Mcmurry, James N. Smith, Jeffery R. Pierce

Civil and Environmental Engineering Faculty Publications and Presentations

New-particle formation (NPF) is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low volatility species, from diameters ∼ 1 to 30–100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available), condensation of organic vapors, uptake of organic acids …


Ogden College Of Science & Engineering Newsletter (Summer 2016), Cheryl Stevens, Dean Jul 2016

Ogden College Of Science & Engineering Newsletter (Summer 2016), Cheryl Stevens, Dean

Ogden College of Science & Engineering Publications

No abstract provided.


Predictive Coupled-Cluster Isomer Orderings For Some SiNCM (M, N ≤ 12) Clusters: A Pragmatic Comparison Between Dft And Complete Basis Limit Coupled-Cluster Benchmarks, Jason N. Byrd, Jesse J. Lutz, Duminda S. Ranasinghe, Yifan Jin, Ajith Perera, Xiaofeng F. Duan, Larry W. Burggraf, John A. Montgomery Jr. Jul 2016

Predictive Coupled-Cluster Isomer Orderings For Some SiNCM (M, N ≤ 12) Clusters: A Pragmatic Comparison Between Dft And Complete Basis Limit Coupled-Cluster Benchmarks, Jason N. Byrd, Jesse J. Lutz, Duminda S. Ranasinghe, Yifan Jin, Ajith Perera, Xiaofeng F. Duan, Larry W. Burggraf, John A. Montgomery Jr.

Faculty Publications

The accurate determination of the preferred Si12C12 isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC3 to Si12C12. It is found that post-MBPT(2) correlation energy plays a …


Aqueous Photochemistry Of Glyoxylic Acid, Alexis J. Eugene, Sha-Sha Xia, Marcelo I. Guzman Jun 2016

Aqueous Photochemistry Of Glyoxylic Acid, Alexis J. Eugene, Sha-Sha Xia, Marcelo I. Guzman

Chemistry Faculty Publications

Aerosols affect climate change, the energy balance of the atmosphere, and public health due to their variable chemical composition, size, and shape. While the formation of secondary organic aerosols (SOA) from gas phase precursors is relatively well understood, studying aqueous chemical reactions contributing to the total SOA budget is the current focus of major attention. Field measurements have revealed that mono-, di-, and oxo-carboxylic acids are abundant species present in SOA and atmospheric waters. This work explores the fate of one of these 2-oxocarboxylic acids, glyoxylic acid, which can photogenerate reactive species under solar irradiation. Additionally, the dark thermal aging …


Carbon Nanotubes Affect The Toxicity Of Cuo Nanoparticles To Denitrification In Marine Sediments By Altering Cellular Internalization Of Nanoparticle, Xiong Zheng, Yinglong Su, Yinguang Chen, Rui Wan, Mu Li, Haining Huang, Xu Li Jun 2016

Carbon Nanotubes Affect The Toxicity Of Cuo Nanoparticles To Denitrification In Marine Sediments By Altering Cellular Internalization Of Nanoparticle, Xiong Zheng, Yinglong Su, Yinguang Chen, Rui Wan, Mu Li, Haining Huang, Xu Li

Department of Civil and Environmental Engineering: Faculty Publications

Denitrification is an important pathway for nitrate transformation in marine sediments, and this process has been observed to be negatively affected by engineered nanomaterials. However, previous studies only focused on the potential effect of a certain type of nanomaterial on microbial denitrification. Here we show that the toxicity of CuO nanoparticles (NPs) to denitrification in marine sediments is highly affected by the presence of carbon nanotubes (CNTs). It was found that the removal efficiency of total NOX-N (NO3-N and NO2-N) in the presence of CuO NPs was only 62.3%, but it …


Development And Implementation Of Problem-Based Chemistry Experiments For Engineering Students In A Multi-Disciplinary Course, Tiffany Hesser, Stephanie R. Bunyea Jun 2016

Development And Implementation Of Problem-Based Chemistry Experiments For Engineering Students In A Multi-Disciplinary Course, Tiffany Hesser, Stephanie R. Bunyea

Chemistry and Chemical Engineering Faculty Publications

This paper will describe the implementation and continuing development of five problem based laboratory experiments in a general chemistry course designed specifically for multiple disciplines of engineering students at the University of New Haven. The Problem Based Laboratory Experiments (PBLE) were developed to provide students with the opportunity to perform and develop experimental procedures working in interdisciplinary teams, while achieving a greater understanding of the role of chemistry in engineering fields. In each PBLE, students first complete a traditional chemistry experiment to gain an understanding of the chemical concepts and to become familiar with executing a written procedure with a …


Multi-Regression Prediction Of Metal Partition Coefficients Under Various Physical/Chemical Conditions Design Of Experiments As, Cr, Cu, Ni And Zn, Eid A. Alkhatib, Danielle Grunzke, Trey Chabot May 2016

Multi-Regression Prediction Of Metal Partition Coefficients Under Various Physical/Chemical Conditions Design Of Experiments As, Cr, Cu, Ni And Zn, Eid A. Alkhatib, Danielle Grunzke, Trey Chabot

Chemistry & Physics Faculty Publications

The behavior of metals in surface water is complex and their partition coefficients can be impacted by many factors. Organic matter (OM) content in sediments, pH and salinity, are factors that may influence speciation and partitioning of metals. The difficulty in describing the impacts and relationships are that these processes are interconnected with no dominant associations among all. In this study, the partitioning of five metals (As, Cr, Cu, Ni and Zn) under different levels of salinity, pH, and OM content were investigated. A series of factorial design experiments are evaluated in which three levels of OM are tested each …


Light-Activated Photocurrent Degradation And Self-Healing In Perovskite Solar Cells, Wanyi Nie, Jean-Christophe Blancon, Amanda J. Neukirch, Kannatassen Appavoo, Hsinhan Tsai, Manish Chhowalla, Muhammad A. Alam, Matthew Y. Sfeir, Claudine Katan, Jacky Even, Sergei Tretiak, Jared J. Crochet, Gautam Gupta, Aditya D. Mohite May 2016

Light-Activated Photocurrent Degradation And Self-Healing In Perovskite Solar Cells, Wanyi Nie, Jean-Christophe Blancon, Amanda J. Neukirch, Kannatassen Appavoo, Hsinhan Tsai, Manish Chhowalla, Muhammad A. Alam, Matthew Y. Sfeir, Claudine Katan, Jacky Even, Sergei Tretiak, Jared J. Crochet, Gautam Gupta, Aditya D. Mohite

Publications and Research

Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. However, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. Here we show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely prevented by operating the devices at 0°C. We investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies.


Optimizing Chemical & Rheological Properties Of Rejuvenated Bitumen, Dominic Nguyen, Hamzeh Haghshenas Fatmehsari, Santosh Kommidi, Yong-Rak Kim Apr 2016

Optimizing Chemical & Rheological Properties Of Rejuvenated Bitumen, Dominic Nguyen, Hamzeh Haghshenas Fatmehsari, Santosh Kommidi, Yong-Rak Kim

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Bitumen has long been a material used in the construction of roadways, yet new pavement only consists of low fractions of recycled materials due to poor compatibility of aged bitumen and new materials. Thus, rejuvenators, chemical additives, have been used in an attempt to re-balance the chemical composition and restore the physical properties of aged bitumen back to its virgin state. A fundamental understanding of how one particular rejuvenator, soybean oil, revitalizes bitumen was investigated using a multi-scale approach.

Fourier-transform infrared spectroscopy (FTIR) was used to determine the changes in chemical properties of pure and rejuvenated virgin and aged samples. …


Hydrogeochemical Modeling Of Saltwater Intrusion And Water Supply Augmentation In South Florida, Yonas T. Habtemichael Apr 2016

Hydrogeochemical Modeling Of Saltwater Intrusion And Water Supply Augmentation In South Florida, Yonas T. Habtemichael

FIU Electronic Theses and Dissertations

The Biscayne Aquifer is a primary source of water supply in Southeast Florida. As a coastal aquifer, it is threatened by saltwater intrusion (SWI) when the natural groundwater flow is altered by over-pumping of groundwater. SWI is detrimental to the quality of fresh groundwater sources, making the water unfit for drinking due to mixing and reactions with aquifer minerals. Increasing water demand and complex environmental issues thus force water utilities in South Florida to sustainably manage saltwater intrusion and develop alternative water supplies (e.g., aquifer storage and recovery, ASR).

The objectives of this study were to develop and use calibrated …


Visible-Light-Responsible Co-Catalysts Enhanced By Graphene For Solar Energy Harvesting, Chen Ying Apr 2016

Visible-Light-Responsible Co-Catalysts Enhanced By Graphene For Solar Energy Harvesting, Chen Ying

Masters Theses & Specialist Projects

This study focuses on the visible light response of hetero-structures of TiO2-graphene- MoS2 for solar energy harvestings. The commercial P25 TiO2 nano-particles, and selfprepared layered reduced graphene oxides (RG) and MoS2 were assembled for the targeted hetero-structure materials as visible-light responsible solar harvesting cocatalysts. The hydrothermal method was applied for nano-material synthesis, the reduction of graphene oxides, and bonding formation. Multiple characterization methods (SEM-TEM, XRD, XPS, UV-VIS, PL, FT-IR, TGA) have been applied to understand the electron-hole pair separation and recombination, and performance tuning in their visible-light photo-catalysis rhodamine B (Rh.B) degradations process

Compared to TiO2, an obvious red shift …


Ogden College Of Science & Engineering Newsletter (Spring 2016), Cheryl Stevens, Dean, Ogden College Of Science & Engineering Mar 2016

Ogden College Of Science & Engineering Newsletter (Spring 2016), Cheryl Stevens, Dean, Ogden College Of Science & Engineering

Ogden College of Science & Engineering Publications

No abstract provided.


Forcespinning: A New Method For The Mass Production Of Sn/C Composite Nanofiber Anodes For Lithium Ion Batteries, Victor Agubra, Luis Zuniga, David De La Garza, Luis Gallegos, Madhab Pokhrel, Mataz Alcoutlabi Mar 2016

Forcespinning: A New Method For The Mass Production Of Sn/C Composite Nanofiber Anodes For Lithium Ion Batteries, Victor Agubra, Luis Zuniga, David De La Garza, Luis Gallegos, Madhab Pokhrel, Mataz Alcoutlabi

Chemistry Faculty Publications and Presentations

The development of nanostructured anode materials for rechargeable Lithium-ion Batteries has seen a growing interest. We herein report the use of a new scalable technique, Forcespinning (FS) to produce binder-free porous Sn/C composite nanofibers with different Sn particle size loading. The preparation process involves the FS of Sn/PAN precursor nanofibers and subsequently stabilizing in air at 280 °C followed by carbonization at 800 °C under an inert atmosphere. The Sn/C composite nanofibers are highly flexible and were directly used as binder-free anodes for lithium-ion batteries. The produced Sn/C composite nanofibers showed an improved discharge capacity of about 724 mA …


Strain Effects On The Work Function Of An Organic Semiconductor, Yanfei Wu, Annabel R. Chew, Geoffrey A. Rojas, Gjergji Sini, Greg Haugstad, Alex Belianinov, Sergei V. Kalinin, Hong Li, Chad Risko, Jean-Luc Brédas, Alberto Salleo, C. Daniel Frisbie Feb 2016

Strain Effects On The Work Function Of An Organic Semiconductor, Yanfei Wu, Annabel R. Chew, Geoffrey A. Rojas, Gjergji Sini, Greg Haugstad, Alex Belianinov, Sergei V. Kalinin, Hong Li, Chad Risko, Jean-Luc Brédas, Alberto Salleo, C. Daniel Frisbie

Chemistry Faculty Publications

Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density …


New Approach Of Modifying The Anatase To Rutile Transition Temperature In Tio2 Photocatalysts, Ciara Byrne, Rachel Fagan, Steven Hinder, Declan Mccormack, Suresh Pillai Jan 2016

New Approach Of Modifying The Anatase To Rutile Transition Temperature In Tio2 Photocatalysts, Ciara Byrne, Rachel Fagan, Steven Hinder, Declan Mccormack, Suresh Pillai

Articles

In pure synthetic titanium dioxide, the anatase to rutile phase transition usually occurs between the temperatures of 600 °C and 700 °C. The phase transition temperature can be altered by various methods, including modifying the precursor or by adding dopant or modifier to the TiO2 sample. In an attempt to investigate the phase transition using aromatic carboxylic acids, the current study examines the impact of increasing concentrations of benzoic acid (1 : 0, 1 : 1, 1 : 4 and 1 : 8 molar ratio TiO2 : benzoic acid) on anatase to rutile transition. The samples were characterised using Raman …


Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin Jan 2016

Effect Of Spalled Particles Thermal Degradation On A Hypersonic Flow Field Environment, Raghava S. C. Davuluri, Huaibao Zhang, Alexandre Martin

Mechanical Engineering Faculty Publications

Two-way coupling is performed between a spallation code and a hypersonic aerothermodynamics CFD solver to evaluate the effect of spalled particles on the flow field. Time accurate solutions are computed in argon and air flow fields. A single particle simulations and multiple particles simulations are performed and studied. The results show that the carbon vapor released by spalled particles tend to change the composition of the flow field, particularly the upstream region of the shock.