Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Characterizing And Quantifying Shear-Induced Hemolysis In A Hollow Fiber Membrane System, Siddhi Bhat May 2023

Characterizing And Quantifying Shear-Induced Hemolysis In A Hollow Fiber Membrane System, Siddhi Bhat

Chemical Engineering Undergraduate Honors Theses

Clinical studies have shown that patients undergoing renal replacement therapy are more susceptible to developing hemolysis, or the rupturing of red blood cells. Rapid hemolysis can cause symptoms such as anorexia, vomiting, and even death in severe cases. The aim of this study is to identify how shear stress within a hollow fiber membrane impacts the level of hemolysis that occurs. This allows for the optimization of the ultrafiltration membranes that are typically used for hemofiltration treatments. The variables being studied are the radii of hollow fibers, number of fibers, and volumetric flow rate of blood being circulated. Here, we …


Water Regulation For Enhancing Soil Quality Using Cactus Mucilage: A Theoretical And Experimental Analysis, Khuloud Alrashdi Jul 2021

Water Regulation For Enhancing Soil Quality Using Cactus Mucilage: A Theoretical And Experimental Analysis, Khuloud Alrashdi

USF Tampa Graduate Theses and Dissertations

As water is one of the primary sources of life, it is essential in an endless number of systems and processes to be utilized efficiently in nature and in practical applications. One of these applications includes farming, which depletes a lot of water as the water irrigation systems cover large soil areas. While water is a critical factor in growing crops, a question here stands, can the irrigation process be transformed? This is the overarching goal of my work since it is centered on studying if cactus mucilage, a natural substance, is capable of improving water absorption processes on crops …


Development Of A Comsol Microdialysis Model, Towards Creation Of Microdialysis On A Chip With Improved Geometries And Recovery, Patrick Pysz Dec 2019

Development Of A Comsol Microdialysis Model, Towards Creation Of Microdialysis On A Chip With Improved Geometries And Recovery, Patrick Pysz

Graduate Theses and Dissertations

Microdialysis (µD) sampling is a diffusion-limited sampling method that has been widely used in different biomedical fields for greater than 35 years. Device calibration for in vivo studies is difficult for current non-steady state analytes of interest correlated with both inflammatory response and microbial signaling molecules (QS); which exist in low ng/mL to pg/mL with molecular weights over a wide range of 170 Da to 70 kDa. The primary performance metric, relative recovery (RR), relating the collected sample to the extracellular space concentration varies from 10% to 60% per analyte even under controlled bench-top conditions. Innovations in microdialysis device design …


Feasibility Of Cathodic Protection In Grouted Post Tensioned Tendons - Exploratory Model Calculations, Jacob Dharma Bumgardner Nov 2015

Feasibility Of Cathodic Protection In Grouted Post Tensioned Tendons - Exploratory Model Calculations, Jacob Dharma Bumgardner

USF Tampa Graduate Theses and Dissertations

Recent corrosion related failures of grouted post tensioned tendons, even after the introduction of improved grouts, have led to renewed interest in supplemental or backup means of corrosion control for these systems. A finite element model is presented to explore feasibility of impressed current cathodic protection of strand in grouted tendons. The model examines polarization evolution as function of service time and includes consideration of anode placement and size, grout porosity, pore water alkalinity, electrochemical species diffusivity and applied voltage on the polarization efficacy and durability of such a system. The exploratory model projections suggested that, within the context of …


A Computational Study Of The Potential For Lng Tanker Polystyrene Foam Insulation Failure Under Fire Exposure, Jeffrey David Martinez Jul 2015

A Computational Study Of The Potential For Lng Tanker Polystyrene Foam Insulation Failure Under Fire Exposure, Jeffrey David Martinez

Graduate Theses and Dissertations

Liquefied natural gas is shipped across the oceans in large marine carriers. The carriers house the LNG using several different insulation systems. One of these systems involves large aluminum spheres insulated with polystyrene foam. Polystyrene foam is very susceptible to heat degradation. This raised issues as to the extent of possible insulation failure caused by a large ship fire. Experiments were done investigating the nature of polystyrene’s thermal degradation, notably by Brauman, Chen, and Matzinger and Butler. A large scale investigation was also performed by Sandia National Laboratory. However, computational modeling of the degradation was lacking. This work set out …


Developing Novel Methods To Characterize Liquid Dispersion In A Fluidized Bed, Masoumeh Farkhondehkavaki Apr 2012

Developing Novel Methods To Characterize Liquid Dispersion In A Fluidized Bed, Masoumeh Farkhondehkavaki

Electronic Thesis and Dissertation Repository

The performance of several important industrial processes, such as fluid coking or fluid catalytic cracking, is dependent on the good distribution of liquid feed sprayed into a fluidized bed of hot inert or catalytic particles, respectively.

Liquid injected into a fluidized bed is distributed in three different ways: (i) free moisture, or liquid coating individual particles; (ii) wet micro-agglomerates, which are fluidized; and (iii) wet macro-agglomerates, which settle to the bottom of the bed. This study develops and evaluates various methods for the determination of this moisture.

In the study using electrical techniques, two different kinds of electrodes geometries are …


The Virtual Hip: An Anatomically Accurate Finite Element Model Based On The Visible Human Dataset, Jonathan M. Ford Oct 2010

The Virtual Hip: An Anatomically Accurate Finite Element Model Based On The Visible Human Dataset, Jonathan M. Ford

USF Tampa Graduate Theses and Dissertations

The purpose of this study is to determine if element decimation of a 3-D anatomical model affects the results of Finite Element Analysis (FEA). FEA has been increasingly applied to the biological and medical sciences. In order for an anatomical model to successfully run in FEA, the 3-D model’s complex geometry must be simplified, resulting in a loss of anatomical detail. The process of decimation reduces the number of elements within the structure and creates a simpler approximation of the model. Using the National Library of Medicine’s Visible Human Male dataset, a virtual 3-D representation of several structures of the …