Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Electrochemical Carbon Dioxide Reduction In Flow Cells, Jia Fan, Na Han, Yan-Guang Li Aug 2020

Electrochemical Carbon Dioxide Reduction In Flow Cells, Jia Fan, Na Han, Yan-Guang Li

Journal of Electrochemistry

Electrochemical carbon dioxide reduction (CO2RR) is an appealing approach to convert atmospheric CO2 to value-added fuels and industrial chemicals, and may play an important role during the transition to a carbon-neutral economy. In order to make this technology commercially viable, it is essential to pursue CO2RR in flow reactors instead of conventional H-type reactors, and to combine electrocatalyst development with system engineering. In this review, we overview the cell configurations and performance advantages of the two types of flow reactors, analyze their shortcomings, and discuss the effects of their different components including gas diffusion electrode …


Recent Progress On Enhancing Effect Of Nanosized Metals For Electrochemical Co2 Reduction, Yu-Ning Zhang, Dong-Fang Niu, Shuo-Zhen Hu, Xin-Sheng Zhang Aug 2020

Recent Progress On Enhancing Effect Of Nanosized Metals For Electrochemical Co2 Reduction, Yu-Ning Zhang, Dong-Fang Niu, Shuo-Zhen Hu, Xin-Sheng Zhang

Journal of Electrochemistry

The electrochemical conversion of CO2 to chemical raw material for further utilization shows promising future to alleviate global warming and realize carbon cycle in nature, which is of great significance to the green chemistry and sustainable development. This review briefly introduces the advantages of CO2 electrochemical reduction (CO2ER) and its basic reaction principles, and summarizes the recent progress in a series of activity enhancement strategies based on nanosized metal catalysts. The influences of alloy effect, interface engineering, synergistic effect, surface defect engineering and support effect on the catalytic performance of nanosized metals for CO2ER …


Electrolyte Tailoring For Electrocatalytic Reduction Of Stable Molecules, Jin-Han Li, Fang-Yi Cheng Aug 2020

Electrolyte Tailoring For Electrocatalytic Reduction Of Stable Molecules, Jin-Han Li, Fang-Yi Cheng

Journal of Electrochemistry

Reduction of stable molecules such as CO2 and N2 is important process in electrochemical energy conversion and storage technologies for electrofuels production. However, for the inert nature of CO2/N2 molecule and competitive proton reduction in conventional aqueous electrolytes, selective electrochemical carbon/nitrogen fixation suffers from high overpotential, low reaction rate and low selectivity. While addressing these issues has witnessed substantial advances in electrocatalysts, much less attention has been placed on the electrolytes, which play an important role in regulating the local environment and thus the performance of catalysts under operating conditions. Rational design of electrolytes has …


Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab Jul 2020

Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab

Chemical Engineering

Water splitting producing hydrogen and oxygen gases appears promising in view of the increasing need of renewable energy sources and storage strategies. Investigation of stable and highly efficient electrocatalysts for oxygen evolution reaction (OER) is targeted in this study at cobalt oxide nanoparticle modified glassy carbon (nano-CoOx/GC) electrodes. The effect of the preparation (Tp) and measuring temperature (Tm) on the electrocatalytic activity of nano-CoOx/GC towards the OER is investigated under various operating conditions. Linear sweep voltammetry (LSV), cyclic voltammetry (CV) as well as SEM and XRD techniques were used to probe the electrocatalytic and morphological characteristics of nano-CoOx prepared under …


Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab Jul 2020

Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab

Chemical Engineering

Water splitting producing hydrogen and oxygen gases appears promising in view of the increasing need of renewable energy sources and storage strategies. Investigation of stable and highly efficient electrocatalysts for oxygen evolution reaction (OER) is targeted in this study at cobalt oxide nanoparticle modified glassy carbon (nano-CoOx/GC) electrodes. The effect of the preparation (Tp) and measuring temperature (Tm) on the electrocatalytic activity of nano-CoOx/GC towards the OER is investigated under various operating conditions. Linear sweep voltammetry (LSV), cyclic voltammetry (CV) as well as SEM and XRD techniques were used to probe the electrocatalytic and morphological characteristics of nano-CoOx prepared under …


A Spin-Coated Tiox/Pt Nanolayered Anodic Catalyst For The Direct Formic Acid Fuel Cells, Islam M. Al-Akraa, Ahmad M. Mohammad Prof Jan 2020

A Spin-Coated Tiox/Pt Nanolayered Anodic Catalyst For The Direct Formic Acid Fuel Cells, Islam M. Al-Akraa, Ahmad M. Mohammad Prof

Chemical Engineering

The CO poisoning of the platinum anodic catalyst which typically functions the catalytic deterioration of the direct formic acid fuel cells could be minimized with a simple modification for Pt with titanium oxide. The fabrication scheme involved the spin-coating of a Ti precursor onto a Pt thin layer that was physically sputtered onto a Si substrate. The whole assembly was subjected to a post-annealing processing to produce the TiOx layer (60 nm) in a porous structure (mostly Anatase) atop of the Pt surface. The porous nature of the TiOx layer permitted the participation of Pt in the electrocatalysis of the …


Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab Jan 2020

Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab

Chemical and Biochemical Engineering Faculty Research & Creative Works

Water splitting producing hydrogen and oxygen gases appears promising in view of the increasing need of renewable energy sources and storage strategies. Investigation of stable and highly efficient electrocatalysts for oxygen evolution reaction (OER) is targeted in this study at cobalt oxide nanoparticle modified glassy carbon (nano-CoOx/GC) electrodes. The effect of the preparation (Tp) and measuring temperature (Tm) on the electrocatalytic activity of nano-CoOx/GC towards the OER is investigated under various operating conditions. Linear sweep voltammetry (LSV), cyclic voltammetry (CV) as well as SEM and XRD techniques were used to probe the electrocatalytic and morphological characteristics of nano-CoOx prepared under …


Advanced Electrodes And Electrolytes For Long-Lived And High-Performance Lithium-Sulfur Batteries, Deepesh Gopalakrishnan Jan 2020

Advanced Electrodes And Electrolytes For Long-Lived And High-Performance Lithium-Sulfur Batteries, Deepesh Gopalakrishnan

Wayne State University Dissertations

ABSTRACT

ADVANCED ELECTRODES AND ELECTROLYTES FOR LONG-LIVED AND HIGH-PERFORMANCE LITHIUM-SULFUR BATTERIES

by

DEEPESH GOPALAKRISHNAN

August 2020

Advisor: Dr. Leela Mohana Reddy Arava

Major: Mechanical Engineering

Degree: Doctor of Philosophy

Lithium – Sulfur (Li-S) batteries have received much attention and considered as a promising candidate for next generation energy storage devices because of their high theoretical energy density (≈2600 Wh kg‒1) and environmental friendliness. However, the uncontrollable growth of lithium dendrites in the lithium metal anode and the fatal effect of polysulfide shuttle hinder their practical applications. The formation of dendrites during repeated Li plating/stripping processes results in: reduced Li availability …