Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Generation Of Biomarkers From Anthrax Spores By Catalysis And Analytical Pyrolysis, Phillip R. Smith Aug 2005

Generation Of Biomarkers From Anthrax Spores By Catalysis And Analytical Pyrolysis, Phillip R. Smith

Theses and Dissertations

Anthrax spores, in weaponized form, are dangerous biological warfare agents. Handheld technology for the rapid detection of anthrax is greatly needed to improve national security. Methods to detect anthrax spores are diverse, with most taking at least an hour for positive identification. A viable option for rapid detection is analytical pyrolysis (AP), which produces chemicals containing taxonomical information (biomarkers). AP methods are reviewed and critically analyzed to show that reproducible detection of anthrax spores in a rapid manner (< 5 min) with a handheld device is not currently possible. A promising alternative to AP is the use of a catalyst to produce biomarkers from anthrax spores with improved selectivity and reproducibility. Catalytic materials having promise for this include platinum, nickel, and superacids. Experiments evaluating several of these materials are described. A biomarker mass spectral library was created, based on information available in the scientific literature, to facilitate analysis and identification of the biomarkers produced experimentally. The RAMFAC algorithm was used to deconvolute chromatographic peaks to produce clean mass spectra and match them against entries in the biomarker library. While the library is not complete, its use with the RAMFAC algorithm enabled detection of many important biomarkers in experiments involving catalytic breakdown of anthrax spores. Experimental results from preliminary tests of several catalysts are presented and discussed. Addition of catalysts in the form of platinum nanoclusters and superacids to bacterial spores in a commercial pyrolyzer effected an increase in the amount of biomarkers produced at mild conditions over traditional pyrolysis methods. Electroformed nickel mesh, on the other hand, demonstrated low catalytic activity for the production of biomarkers, likely due to poor contact of the spores with the mesh. Biomarkers similar to those published in the literature were observed, including dipicolinic acid, picolinic acid, propionamide, acetamide, diketopiperazines, fatty acids, furfuryl alcohol, and DNA bases. A statistically designed factorial study was used to determine the importance of temperature, spore loading, and nanocluster loading on the production of three important biomarkers. The relative importance of these variables differs for each of the three important biomarkers, suggesting they are produced by different reaction mechanisms.


Catalytic Wet Air Oxidation Of Phenol In Concurrent Downflow And Upflow Packed-Bed Reactors Over Pillared Clay Catalyst, Jing Guo, Muthanna H. Al-Dahhan Feb 2005

Catalytic Wet Air Oxidation Of Phenol In Concurrent Downflow And Upflow Packed-Bed Reactors Over Pillared Clay Catalyst, Jing Guo, Muthanna H. Al-Dahhan

Chemical and Biochemical Engineering Faculty Research & Creative Works

An Experimental Study is Presented for Comparing the Behavior of a Packed Bed Reactor in the Catalytic Liquid-Phase Oxidation of Aqueous Phenol with Two Modes of Operation, Downflow and Upflow. the Operating Parameters Investigated Included Temperature, Reactor Pressure, Gas Flowrate, Liquid Hourly Space Velocity and Feed Concentration. Because of the Completely Wetted Catalyst, the Upflow Reactor Generally Performs Better for High Pressures and Low Feed Concentrations When the Liquid Reactant Limitation Controls the Rate. the Interaction between the Reactor Hydrodynamics, Mass Transfer, and Reaction Kinetics is Discussed. for Both Operation Modes, Complete Phenol Removal and Significant Total Organic Carbon (TOC) …