Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

Journal of Electrochemistry

Li-ion battery

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Study And Improvement On Expansion Property Of Silicon Oxide, Wei-Chuan Qiao, Fang-Ru Li, Jin-Lin Xiao, Li-Juan Qu, Xiao Zhao, Meng Zhang, Chun-Lei Pang, Zi-Kun Li, Jian-Guo Ren, Xue-Qin He May 2022

Study And Improvement On Expansion Property Of Silicon Oxide, Wei-Chuan Qiao, Fang-Ru Li, Jin-Lin Xiao, Li-Juan Qu, Xiao Zhao, Meng Zhang, Chun-Lei Pang, Zi-Kun Li, Jian-Guo Ren, Xue-Qin He

Journal of Electrochemistry

The silicon-based anode materials have the potential to meet the ever-increasing demand for energy density in lithium-ion batteries market owing to their high theoretical specific capacity. Unfortunately, their commercialization was hindered by the continuous volume expansion. Herein, the expansion characteristics and corresponding mechanism of the silicon oxide and graphite-silicon oxide composites were investigated by in-situ displacement detection systematically. The results showed that the expansion property was improved by material process modifications. During the de/lithiation processes of graphite, the expansion ratio in 30% ~ 50% SOC changed little because of the small interlayer spacing variation of the intercalated graphite. …


Aqueous Solution-Evaporation Route Synthesis And Phase Structural Research Of The Li-Rich Cathode Li1.23Ni0.09Co0.12Mn0.56O2 By In-Situ Xrd, Chong-Heng Shen, Shou-Yu Shen, Zhou Lin, Xiao-Mei Zheng, Hang Su, Ling Huang, Jun-Tao Li, Shi-Gang Sun Dec 2013

Aqueous Solution-Evaporation Route Synthesis And Phase Structural Research Of The Li-Rich Cathode Li1.23Ni0.09Co0.12Mn0.56O2 By In-Situ Xrd, Chong-Heng Shen, Shou-Yu Shen, Zhou Lin, Xiao-Mei Zheng, Hang Su, Ling Huang, Jun-Tao Li, Shi-Gang Sun

Journal of Electrochemistry

The Li-rich Li1.23Ni0.09Co0.12Mn0.56O2 material was synthesized via aqueous solution-evaporation route. The structure and morphology of the material were characterized by means of XRD and SEM. The results indicated that the single particle of the product was polygonal with the size of 330 nm and the structure was layered solid solution with a certain amount of Li2MnO3. Electrochemical tests showed that the first discharge capacity of the Li-rich layered material was 250.8 mAh·g-1 at 0.1C,the capacity retention was 86.5% after 40 cycles. Through in-situ XRD study a …


Synthesis Of Lifepo4/C Cathode By Sol-Gel And Calcining Method With Chitosan Monomer, Jia Xu, Yan-Yan Wang, Rui Wang, Bo Wang, Yue Pan, Dian-Xue Cao, Gui-Ling Wang Apr 2013

Synthesis Of Lifepo4/C Cathode By Sol-Gel And Calcining Method With Chitosan Monomer, Jia Xu, Yan-Yan Wang, Rui Wang, Bo Wang, Yue Pan, Dian-Xue Cao, Gui-Ling Wang

Journal of Electrochemistry

The LiFePO4/C cathode materials for Li-ion battery were synthesized by sol-gel and calcining method using chitosan monomer as a carbon source and a gelating agent. The structures and morphologies were characterized by X-ray diffraction spectroscopy (XRD) and scanning electron microscopy (SEM). The electrochemical performance was investigated by the galvanostatic charge–discharge test. When the molar ratios between chitosan monomer and LiFePO4 were 1:1.2, the LiFePO4/C cathode calcined at 600 oC showed the best performance. The particle sizes ranged 200 ~ 400 nm. The initial discharge capacity of 155 mAh.g-1 was achieved at room temperature …


Synthesis And Electrochemical Properties Of High-Capacity Cathode Material 0.08lico0.75Al0.25O2-0.92linio2, Ru-Ying Wang, Tian Qiu, Chong Mao, Wen-Sheng Yang Aug 2012

Synthesis And Electrochemical Properties Of High-Capacity Cathode Material 0.08lico0.75Al0.25O2-0.92linio2, Ru-Ying Wang, Tian Qiu, Chong Mao, Wen-Sheng Yang

Journal of Electrochemistry

CoAl-LDH or Co(OH)2 coated spherical Ni(OH)2 precursors were obtained via a co-precipitation method at a constant pH. The mixtures of the precursors and LiOH.H2O were annealed at high temperature in O2 atmosphere, and then the cathode materials of 0.08LiCo0.75Al0.25O2-0.92LiNiO2, 0.08LiCoO2-0.92LiNiO2 and LiNiO2 were synthesized. Effects of the coating layer were also studied. The results showed that the 0.08LiCo0.75Al0.25O2-0.92LiNiO2 material possessed the best rate and cycle life performance. The discharging capacities at 0.1C, 0.5C and 3C were …