Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 29 of 29

Full-Text Articles in Engineering

Hydrodynamic Investigation Of The Discharge Of Complex Fluids From Dispensing Bottles Using Experimental And Computational Approaches, Baran Teoman Dec 2022

Hydrodynamic Investigation Of The Discharge Of Complex Fluids From Dispensing Bottles Using Experimental And Computational Approaches, Baran Teoman

Dissertations

The discharge of non-Newtonian, complex fluids through orifices of industrial tanks, pipes, dispensers, or packaging containers is a ubiquitous but often problematic process because of the complex rheology of such fluids and the geometry of the containers. This, in turn, reduces the discharge rate and results in residual fluid left in the container, often referred to as heel. Heel formation is undesired in general, since it causes loss of valuable material, container fouling, and cross-contamination between batches. Heel may be of significant concern not only in industrial vessels but also in consumer packaging. Despite its relevance, the research in this …


Observing And Modeling Water Electrolysis Performance Limitations Attributed To Gas Generation And Porous Media Properties, Joseph S. Lopata Apr 2022

Observing And Modeling Water Electrolysis Performance Limitations Attributed To Gas Generation And Porous Media Properties, Joseph S. Lopata

Theses and Dissertations

Water electrolysis has been a simple method of hydrogen production for over two centuries, but the exploration of its nuances is still accelerating. This work compiles numerous mechanisms via which electrolysis efficiency is influenced by phenomena that occur within, adjacent to, and nearby functional porous media. Computational and experimental methods are applied to electrolysis systems to quantify the impact of twophase flow patterns and porous media properties on energy losses, primarily those linked directly to the presence of the gas phase.

First, an introduction to the chemistry and operating principle of water electrolysis is presented and relevant works from the …


Computational Fluid Dynamics Techniques For Multiphase Flow Systems, Jose Sebastian Uribe Lopez Jan 2022

Computational Fluid Dynamics Techniques For Multiphase Flow Systems, Jose Sebastian Uribe Lopez

Doctoral Dissertations

"Mathematical modelling of multiphase flow systems has been a major and persistent challenge over the last decades. Vast attempts to obtain predictive models can be found reported in literature, where major advances can be recognized in recent years, paired to enhancements in computer science and engineering. Notwithstanding, universally valid models with a mechanistic development are far from being achieved. The current status of modelling any multiphase flow system relies on the model order reduction of purely theoretical models. Such reductions and simplifications become the source of deviations in the predictions of the experimentally measured parameters and will constrain the applicability …


A Computational Fluid Dynamics Analysis Of The Temperature And Impurity Profiles In The Protodune-Sp Neutrino Detector, Jenna Harrison Jan 2022

A Computational Fluid Dynamics Analysis Of The Temperature And Impurity Profiles In The Protodune-Sp Neutrino Detector, Jenna Harrison

Electronic Theses and Dissertations

Computational fluid dynamics (CFD) models of the ProtoDUNE single-phase detector were developed, refined, and analyzed. The ProtoDUNE single-phase detector is a prototype detector that is part of the Deep Underground Neutrino Experiment, an international research collaboration aimed at better understanding neutrinos and the role they play in our universe. The ProtoDUNE single-phase detector is used to gather data and inform design changes for the full-sized far detector prior to its construction. The effects of certain geometric features and heat sources on the thermal profiles within the liquid region of the detector were investigated in a set of parametric studies. The …


Experimental And Computational Study Of Determining Mass Transport Parameters In Vanadium Redox Flow Batteries, Tugrul Y. Ertugrul Aug 2021

Experimental And Computational Study Of Determining Mass Transport Parameters In Vanadium Redox Flow Batteries, Tugrul Y. Ertugrul

Doctoral Dissertations

Vanadium redox flow batteries are a promising large-scale energy storage technology, but a number of challenges must be overcome for commercial implementation. At the cell level, mass transport contributes significantly to performance losses, limiting VRFB performance. Therefore, understanding mass transport mechanisms in the electrode is a critical step to mitigating such losses and optimizing VRFBs.

In this study, mass transport mechanisms (e.g. convection, diffusion) are investigated in a VRFB test bed using a strip cell architecture, having 1 cm2 active area. It is found that diffusion-dominated cells have large current gradients; convection-dominated cells have relatively uniform current distribution from …


Non-Invasive Detection And Assessment Of Coronary Stenosis From Blood Mean Residence Times., Javad Hashemi Dec 2019

Non-Invasive Detection And Assessment Of Coronary Stenosis From Blood Mean Residence Times., Javad Hashemi

Electronic Theses and Dissertations

Coronary artery stenosis is an abnormal narrowing of a coronary artery caused by an atherosclerotic lesion that reduces lumen space. Fractional flow reserve (FFR) is the gold standard method to determine the severity of coronary stenosis based on the determination of rest and hyperemic pressure fields, but requires an invasive medical procedure. Normal FFR is 1.0 and FFR RT, to account for varying volume and flow rate of individual segments. BloodRT was computed in 100 patients who had undergone the pressure-wire FFR procedure, and a threshold for BloodRT was determined to assess the physiological significance of a stenosis, …


Numerical Study Of Spacer Grid Geometry In A 5 X 5 Nuclear Fuel Rod Bundle, Wan Chuan Fan May 2019

Numerical Study Of Spacer Grid Geometry In A 5 X 5 Nuclear Fuel Rod Bundle, Wan Chuan Fan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Reactor fuel rod bundles serve as the primary heat source in light water reactors (LWRs), commonly found in the aforementioned PWR plants. The fuel rod bundles’ structure consists of a collection of fuel rods put into a parallel grid configuration. The bundles also include fuel rod spacers, which hold the fuel rods in place, in accordance with the grid. Repeating structures of the fuel bundles create the meta-structure in the reactor. In other words, the grid configuration repeats until it fills the entire space of the reactor. This results in reactor fuel rods suspended in the working fluid domain, oriented …


Experimental And Numerical Characterization Of Multiphase Subsurface Oil Release, Feng Gao Dec 2018

Experimental And Numerical Characterization Of Multiphase Subsurface Oil Release, Feng Gao

Dissertations

Subsurface oil release is commonly encountered in the natural environment and engineering applications and has received the substantial attention of researchers after the disastrous Deepwater Horizon Blowout oil spill in 2009. The main focus on the present research is to systematically study the hydrodynamics of underwater oil jet under a variety of conditions, including the effect of dispersant and different gas to oil ratios (GOR) by using experimental measurement as well as a Computational Fluid Dynamics (CFD) approach, from which the measured turbulent characteristics (e.g., velocity, turbulent kinetic energy, turbulence dissipation rate, etc.) of underwater oil jet are thoroughly examined …


Overcoming Conventional Modeling Limitations Using Image- Driven Lattice-Boltzmann Method Simulations For Biophysical Applications, Olufemi E. Kadri Dec 2018

Overcoming Conventional Modeling Limitations Using Image- Driven Lattice-Boltzmann Method Simulations For Biophysical Applications, Olufemi E. Kadri

Dissertations

The challenges involved in modeling biological systems are significant and push the boundaries of conventional modeling. This is because biological systems are distinctly complex, and their emergent properties are results of the interplay of numerous components/processes. Unfortunately, conventional modeling approaches are often limited by their inability to capture all these complexities. By using in vivo data derived from biomedical imaging, image-based modeling is able to overcome this limitation.

In this work, a combination of imaging data with the Lattice-Boltzmann Method for computational fluid dynamics (CFD) is applied to tissue engineering and thrombogenesis. Using this approach, some of the unanswered questions …


Evaluation Of A Microfluidic Mixer Utilizing Staggered Herringbone Channels: A Computational Fluid Dynamics Approach, Brian Hama Jan 2017

Evaluation Of A Microfluidic Mixer Utilizing Staggered Herringbone Channels: A Computational Fluid Dynamics Approach, Brian Hama

ETD Archive

Microfluidic platforms offer a variety of advantages including improved heat transfer, low working volumes, ease of scale-up, and strong user control on parameters. However, flow within microfluidic channels occurs at low Reynolds numbers, which makes mixing difficult to accomplish. Adding V-shaped ridges to channel walls, a pattern called the staggered herringbone design (SHB), might alleviate this problem by introducing transverse flow patterns that enable enhanced mixing. However, certain factors affecting the SHB mixer’s performance remain largely unexplored.

In this work, a microfluidic mixer utilizing the SHB geometry was developed and characterized using computational fluid dynamics based simulations and complimentary experiments. …


Model Of A Tubular Perfusion Bioreactor Using Computational Fluid Dynamics., Matthew James Robeson 1991- Jul 2015

Model Of A Tubular Perfusion Bioreactor Using Computational Fluid Dynamics., Matthew James Robeson 1991-

Electronic Theses and Dissertations

Through recent years, many novel bioreactor designs for tissue engineering have emerged. The Tubular Perfusion System (TPS) is one such bioreactor for bone and cartilage tissue engineering. The TPS is a perfusion type bioreactor, in which media flows through a bed of scaffold beads. The advantage of this system over similar designs is that it requires no special fabrication techniques and operates at low pressure. Experimental trials have shown increased osteoblastic differentiation and mineralization of bone tissue grown using the TPS versus static culture. The effectiveness of the TPS in promoting osteoblastic differentiation is believed to be due to enhanced …


Experimental And Numerical Investigation Of Heat Transfer In Cnt Nanofluids May 2015

Experimental And Numerical Investigation Of Heat Transfer In Cnt Nanofluids

Faculty of Engineering University of Malaya

Nanofluids with their enhanced thermal conductivity are believed to be a promising coolant in heat transfer applications. In this study, carbon nanotube (CNT) nanofluids of 0.01wt%, stabilised by 1.0wt% gum arabic were used as a cooling liquid in a concentric tube laminar flow heat exchanger. The flow rate of cold fluid varied from 10 to 50g/s. Both experimental and numerical simulations were carried out to determine the heat transfer enhancement using CNT nanofluids. Computational fluid dynamics (CFD) simulations were carried out using Fluent v 6.3 by assuming single-phase approximation. Thermal conductivity, density and rheology of the nanofluid were also measured …


Disinfection And Advanced Oxidation Of Highly Absorbing Fluids By Uv/Vuv Light: Process Modeling And Validation, Ferdinando Crapulli Apr 2015

Disinfection And Advanced Oxidation Of Highly Absorbing Fluids By Uv/Vuv Light: Process Modeling And Validation, Ferdinando Crapulli

Electronic Thesis and Dissertation Repository

One of the limitations in treating highly absorbing fluids with ultraviolet photoreactors is the short light penetration into the fluid leading to the following issues: (a) if not engineered properly, ultraviolet photoreactors dealing with highly absorbing fluids are likely to be energy-inefficient due to a non-ideal use of emitted photons and non-uniform dose distribution (b) the quantification of photo-chemical rate constants could be a challenging task due to the severe mixing-limited conditions of the experimental apparatus used during the investigation. As a result, new lab-scale apparatus (alternative to the conventional collimated beam system) and modeling approaches are needed in order …


Computational Fluid Dynamics Analysis Of Freeze Drying Process And Equipment, Nikhil P. Varma Oct 2014

Computational Fluid Dynamics Analysis Of Freeze Drying Process And Equipment, Nikhil P. Varma

Open Access Theses

Freeze drying is an important, but expensive, inefficient and time consuming process in the pharmaceutical, chemical and food processing industries. Computational techniques could be a very effective tool in predictive design and analysis of both freeze drying process and equipment. This work is an attempt at using Computational Fluid Dynamics(CFD) and numerical simulations as a tool for freeze drying process and equipment design.

Pressure control is critical in freeze dryers, keeping in view the product stability. In industrial freeze dryers, loss of pressure control can lead to loss of an entire batch. Pressure variation within the chamber could also lead …


Investigation Of Convection And Diffusion During Biodiesel Production In Packed Membrane Reactor Using 3d Simulation, Abdul Aziz Abdul Raman Jul 2014

Investigation Of Convection And Diffusion During Biodiesel Production In Packed Membrane Reactor Using 3d Simulation, Abdul Aziz Abdul Raman

Abdul Aziz Abdul Raman

The 3D simulation of convection and diffusion phenomena within a ceramic membrane during transesterification reaction was the aim of this study. The ceramic membrane was a tubular micro porous TiO2/Al2O3 packed with the heterogeneous catalyst. The Navier-Stokes, Brinkman and Stephan-Maxwell equations were applied for investigation of fluid flow reaction and mass transfer within the system. The value of the convection was generally between 104 and 107 times higher than diffusion. It depends on concentration component, the diffusion coefficient and components velocity. A good agreement was found with the maximum deviation of 8% from experimental data. © 2013 The Korean Society …


Applications Of Cfd Simulations On Studying The Multiphase Flow In Microfluidic Devices, Yuehao Li Jan 2014

Applications Of Cfd Simulations On Studying The Multiphase Flow In Microfluidic Devices, Yuehao Li

LSU Doctoral Dissertations

Microfluidics has been extensively investigated as a unique platform to synthesize nanoparticles with desired properties, e.g., size and morphology. Compared to the conventional batch reactors, wet-chemical synthesis using continuous flow microfluidics provides better control over addition of reagents, heat and mass transfer, and reproducibility. Recently, millifluidics has emerged as an alternative since it offers similar control as microfluidics. With its dimensions scaled up to millimeter size, millifluidics saves fabrication efforts and potentially paves the way for industrial applications. Good designs and manipulations of microfluidic and millifluidic devices rely on solid understanding of fluid dynamics. Fluid flow plays an important role …


Optimization Of Mixing In A Simulated Biomass Bed Reactor With A Center Feeding Tube, Michael T. Blatnik Jan 2013

Optimization Of Mixing In A Simulated Biomass Bed Reactor With A Center Feeding Tube, Michael T. Blatnik

Masters Theses 1911 - February 2014

Producing gasoline-type fuels from lignocellulosic biomass has two advantages over producing alcohol-type fuels from plant sugars: gasoline has superior fuel characteristics and plant lignin/cellulose does not compete with human food supplies. A promising technology for converting lignocellulose to fuel is catalytic fast pyrolysis (CFP). The process involves injecting finely ground biomass into a fluidized bed reactor (FBR) at high temperatures, which reduce the biomass to gases that react inside the catalyst particles. This entails complex hydrodynamics to efficiently mix a stream of biomass into a catalyst bed that is fluidized by a separate stream of inert gas. Understanding the hydrodynamics …


Developments On Wetting Effects In Microfluidic Slug Flow, Rafael M. Santos, Masahiro Kawaji Sep 2012

Developments On Wetting Effects In Microfluidic Slug Flow, Rafael M. Santos, Masahiro Kawaji

Faculty Publications and Scholarship

Wetting effects form a dimension of fluid dynamics that becomes predominant, precisely controllable and possibly useful at the micro-scale. Microfluidic multiphase flow patterns, including size, shape and velocity of fluidic particles, and mass and heat transfer rates are affected by wetting properties of microchannel walls and surface tensions forces between fluid phases. The novelty of this field, coupled to difficulties in experimental design and measurements, means that literature results are scarce and scientific understanding is incomplete. Numerical methods developed recently have enabled a shortcut in obtaining results that can be perceived realistic, and that offer insight otherwise not possible. In …


Multi-Processor Computation Of Thrombus Growth And Embolization In A Model Of Blood-Biomaterial Interaction Based On Fluid Dynamics, Brandon Thomas Andersen Apr 2012

Multi-Processor Computation Of Thrombus Growth And Embolization In A Model Of Blood-Biomaterial Interaction Based On Fluid Dynamics, Brandon Thomas Andersen

Theses and Dissertations

This work describes the development and testing of a real-time three-dimensional computational fluid dynamics simulation of thrombosis and embolization to be used in the design of blood-contacting devices. Features of the model include the adhesion and aggregation of blood platelets on device material surfaces, shear and chemical activation of blood platelets, and embolization of platelet aggregates due to shear forces. As thrombus develops, blood is diverted from its regular flow field. If shear forces on a thrombus are sufficient to overcome the strength of adhesion, the thrombus is dislodged from the wall. Development of the model included preparing thrombosis and …


Single And Multiphase Mixing In Partially Filled Stirred Vessels, Shilan Motamedvaziri Jan 2012

Single And Multiphase Mixing In Partially Filled Stirred Vessels, Shilan Motamedvaziri

Dissertations

In many industrial applications, mixing vessels have a liquid height-to-tank diameter ratio, H/T, equal to, or larger than 1. However, there are many instances where this ratio is lower than 1, as in all those cases in which the vessel is either emptied or filled. Even when H/T<1, sufficient agitation must still be provided in order to attain the desired process objectives. When the impeller submergence is reduced as a result of lowering the liquid level, the fluid dynamics of even a single-phase stirred liquid can become quite complex, with different regimes possibly existing depending on the geometric characteristics of the system (such as impeller clearance, liquid height, or liquid submergence above the impeller). The objectives of this work were to study in detail the hydrodynamic changes that occur when H/T is decreased, and to determine the minimum liquid levels and the critical impeller submergence for different impeller off-bottom distances, impeller diameters and agitation speeds where adequate mixing process can still be achieved, both in a single liquid phase and in solid-liquid suspensions.

Flat-bottomed, baffled vessels (5L, 12L, 20L and 170L) equipped with a single disk turbine (DT) of four different sizes placed at five different impeller off-bottom clearances were used here to study the system's hydrodynamics and related mixing phenomena. A number of experimental tools were used to analyze the systems under investigation, including: …


Gas-Liquid Slug Formation At A Rectangular Microchannel T-Junction: A Cfd Benchmark Case, Rafael M. Santos, Masahiro Kawaji Dec 2011

Gas-Liquid Slug Formation At A Rectangular Microchannel T-Junction: A Cfd Benchmark Case, Rafael M. Santos, Masahiro Kawaji

Faculty Publications and Scholarship

Computational fluid dynamics (CFD) is an important tool for development of microfluidic systems based on gas-liquid two-phase flow. The formation of Taylor slugs at microchannel T-junctions has been studied both experimentally and numerically, however discrepancies still exist because of difficulties in correctly representing experimental conditions and uncertainties in the physics controlling slug flow, such as contact line and velocity slip. In this paper detailed methods and results are described for the study of Santos and Kawaji [1] on the comparison of experimental results and numerical modeling. The system studied consisted of a rectangular microchannel T-junction nominally 100μm in hydraulic diameter, …


Effects Of Operating And Geometric Variables On Hydrodynamics And Tablet Dissolution In Standard And Modified Dissolution Testing Apparatuses 2, Yimin Wang Aug 2011

Effects Of Operating And Geometric Variables On Hydrodynamics And Tablet Dissolution In Standard And Modified Dissolution Testing Apparatuses 2, Yimin Wang

Dissertations

Dissolution testing is routinely conducted in the pharmaceutical industry to provide critical in vitro drug release information for quality control purposes, and especially to assess batch-to-batch consistency of solid oral dosage forms such as tablets. Among the different types of apparatuses listed in the United States Pharmacopoeia (USP), the most commonly used dissolution system for solid dosage forms is the USP Dissolution Testing Apparatus 2, consisting of an unbaffled, hemispherical-bottomed vessel equipped with a 2-blade radial impeller.

Despite its extensive use in industry and a large body of work, some key aspects of the hydrodynamics of Apparatus 2 have received …


Cfd Modeling Of Entrance And Exit Geometries Of A Wind Speed Accelerator., David Russ May 2011

Cfd Modeling Of Entrance And Exit Geometries Of A Wind Speed Accelerator., David Russ

Electronic Theses and Dissertations

Current wind power technology is not economically feasible throughout most of the United States due to low average wind speeds. A design for a small-scale wind concentrator device suitable for use in areas of low wind velocity was tested using computational fluid dynamics (CFD). Using a novel approach, the device seeks to accelerate incoming air above minimum velocities required for economical power generation. The novel approach employs a funnel shaped inlet with relief vents along the circumference, so as to alleviate backpressure. Both inlet and outlet sections utilize funnel shapes with both parabolic and hyperbolic regions. All geometry and mesh …


Hydrodynamic Characteristics Of A Novel Circulating Fluidized Bed Steam Reformer Operating In The Fast Fluidization Regime, Moataz Bellah M. Mousa, Seif-Eddeen K. Fateen, Essam A. Ibrahim Jan 2011

Hydrodynamic Characteristics Of A Novel Circulating Fluidized Bed Steam Reformer Operating In The Fast Fluidization Regime, Moataz Bellah M. Mousa, Seif-Eddeen K. Fateen, Essam A. Ibrahim

Seif-Eddeen K Fateen

Circulating Fluidized Bed Steam Reformers (CFBSRs) represent an important alternative for the production of syngas for the Fisher-Tropsch (FT) process and for hydrogen production. Most research regarding this novel CFBSRs did not consider its hydrodynamic characteristics. In this work, the riser Computational Fluid Dynamics (CFD) simulations were investigated using two phase Eulerian-Eulerian approach coupled with kinetic theory of granular flow with k-epsilon model to describe the turbulence of each phase. The model equations were solved via the commercial CFD package FLUENT, which uses the finite volume numerical approach. Cold flow simulations were carried out under the fast fluidization regime and …


Numerical Modeling And Experimental Investigation Of Gas-Liquid Slug Formation In A Microchannel T-Junction, Rafael M. Santos, Masahiro Kawaji Apr 2010

Numerical Modeling And Experimental Investigation Of Gas-Liquid Slug Formation In A Microchannel T-Junction, Rafael M. Santos, Masahiro Kawaji

Faculty Publications and Scholarship

Gas-liquid two-phase flow in a microfluidic T-junction with nearly square microchannels of 113 μm hydraulic diameter was investigated experimentally and numerically. Air and water superficial velocities were 0.018–0.791 m/s and 0.042–0.757 m/s, respectively. Three-dimensional modeling was performed with computational fluid dynamics (CFD) software FLUENT and the volume-of-fluid (VOF) model. Slug flow (snapping/breaking/jetting) and stratified flow were observed experimentally. Numerically predicted void fraction followed a linear relationship with the homogeneous void fraction, while experimental values depended on the superficial velocity ratio UG/UL. Higher experimental velocity slip caused by gas inlet pressure build-up and oscillation caused deviation from numerical predictions. Velocity slip …


Modeling Of Dispersed Phase By Lagrangian Approach In Fluent - 2d Exercise, Kari Myöhänen Jan 2008

Modeling Of Dispersed Phase By Lagrangian Approach In Fluent - 2d Exercise, Kari Myöhänen

Kari Myöhänen

This shows an example calculation applying DPM model in Fluent. This is related to the other DPM presentation and was prepared for the course 'Theory and simulation of dispersed-phase multiphase flows" by Dr. Payman Jalali, Lappeenranta University of Technology.


Modeling Of Dispersed Phase By Lagrangian Approach In Fluent, Kari Myöhänen Jan 2008

Modeling Of Dispersed Phase By Lagrangian Approach In Fluent, Kari Myöhänen

Kari Myöhänen

This is a seminar work prepared for a course 'Theory and simulation of dispersed-phase multiphase flows' by Dr. Payman Jalali, Lappeenranta University of Technology


Hydrodynamics Investigation Of In-Vitro Dissolution Testing, Ge Bai Jan 2007

Hydrodynamics Investigation Of In-Vitro Dissolution Testing, Ge Bai

Dissertations

Dissolution testing is routinely carried out in the pharmaceutical industry to determine dissolution rate of solid dosage forms. The United States Pharmacopoeia (USP) Dissolution Apparatus II is the device most commonly used for this purpose. Despite its widespread use, dissolution testing remains susceptible to significant error and test failures. Limited information is available on the hydrodynamics of this apparatus, although hydrodynamic effects can play a major role on test performance.

Laser-Doppler Velocimetry (LDV) and Computational Fluid Dynamics (CFD) were used here to experimentally map and computationally predict the velocity distribution inside a standard USP Apparatus II under the typical operating …


A Validation Of The P-Sllod Equations Of Motion For Homogeneous Steady-State Flows, David J. Keffer, B. J. Edwards, C. Baig Jan 2006

A Validation Of The P-Sllod Equations Of Motion For Homogeneous Steady-State Flows, David J. Keffer, B. J. Edwards, C. Baig

Faculty Publications and Other Works -- Chemical and Biomolecular Engineering

A validation of the p-SLLOD equations of motion for nonequilibrium molecular dynamics simulation under homogeneous steady-state flow is presented. We demonstrate that these equations generate the correct center-of-mass trajectory of the system, are completely compatible with (and derivable from) Hamiltonian dynamics, satisfy an appropriate energy balance, and require no fictitious external force to generate the required homogeneous flow. It is also shown that no rigorous derivation of the SLLOD equations exists to date.