Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering

PDF

Sheridan College

Series

Hydrothermal conversion

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Hydrothermal Conversion Of Neutral Sulfite Semi-Chemical Red Liquor Into Hydrochar, Ramy Gamgoum, Animesh Dutta, Rafael M. Santos, Yi Wai Chiang Jun 2016

Hydrothermal Conversion Of Neutral Sulfite Semi-Chemical Red Liquor Into Hydrochar, Ramy Gamgoum, Animesh Dutta, Rafael M. Santos, Yi Wai Chiang

Faculty Publications and Scholarship

Hydrochar was produced from neutral sulfite semi-chemical (NSSC) red liquor as a possible bio-based solid fuel for use in power generation facilities. Hydrothermal conversion (HTC) experiments were conducted using a fixed liquor-to-water volume ratio of 1:8 and reaction time of 3 h. Solutions were processed using different chemical additives, pH and temperature conditions to determine the optimum conditions required for producing a high energy content solid fuel. The hydrochar samples produced were analyzed by ultimate, thermogravimetric (TGA) and Fourier transform infrared spectroscopy (FTIR) analyses to determine physicochemical properties that are important for utilization as a fuel. The residual process liquids …


Towards Zero-Waste Mineral Carbon Sequestration Via Two-Way Valorization Of Ironmaking Slag, Yi Wai Chiang, Rafael M. Santos, Jan Elsen, Boudewijn Meesschaert, Johan A. Martens, Tom Van Gerven Aug 2014

Towards Zero-Waste Mineral Carbon Sequestration Via Two-Way Valorization Of Ironmaking Slag, Yi Wai Chiang, Rafael M. Santos, Jan Elsen, Boudewijn Meesschaert, Johan A. Martens, Tom Van Gerven

Faculty Publications and Scholarship

A three-stage process was developed to transform blast furnace slag (BFS) into two valuable products: precipitated calcium carbonate (PCC) and zeolitic materials. The conceptualized process aims to simultaneously achieve sustainable CO2 sequestration and solid waste elimination. Calcium is first selectively extracted by leaching with an organic acid, followed by carbonation of the leachate to precipitate CaCO3. In parallel, the hydrothermal conversion of the extracted solid residues in alkali solution induces the dissolution/precipitation mechanism that leads to the formation of micro- and meso-porous zeolitic materials. Leaching selectivity was identified as a key factor in the valorization potential of both products. Acetic …