Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Catalysis and Reaction Engineering

2015

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 68

Full-Text Articles in Engineering

Synthesis Of Porous Carbon Nanosheets And Its Application In Sodium-Ion Battery, Jing-Fei Zhang, Jing Lu, Xiao-Yu Yang, Yun-Di Huang, Lin Xu, Dong-Mei Sun, Ya-Wen Tang Dec 2015

Synthesis Of Porous Carbon Nanosheets And Its Application In Sodium-Ion Battery, Jing-Fei Zhang, Jing Lu, Xiao-Yu Yang, Yun-Di Huang, Lin Xu, Dong-Mei Sun, Ya-Wen Tang

Journal of Electrochemistry

Owning to sodium’s high abundance, relatively low cost, similar chemical properties to Li and very suitable redox potential of E0(Na+/Na) = -2.71 V versus SHE which is only 0.3 V above that of lithium, rechargeable sodium ion battery hold much promise as potential alternatives to current lithium ion batteries for energy storage applications. Carbon material is regarded as the most promising anode candidate for sodium ion battery. Particularly, carbon nanosheet with porous structure and high conductivity is expected to have improved sodium ion storage properties. In this paper, we present a two-step pyrolysis-based method for facile synthesis of porous carbon …


Methods For Coating Quartz Crystals, William Patrick Dec 2015

Methods For Coating Quartz Crystals, William Patrick

Senior Honors Projects, 2010-2019

The goal of this project was to evaluate the effectiveness a procedure that can be used to coat quartz crystal microbalance crystals with titanium dioxide. A successful suspension was created by suspending titanium dioxide powder in poly(acrlic) acid and mixed in an ultra-sonication bath. By utilizing a spin-coater, the TiO2 suspension was successfully dispensed onto a QCM crystal and verified using a surface profiler and microscope. However, after QCM testing, there was no evidence that supports the TiO2 precursor aiding in photocatalytic reactions.


Applying Bayesian Machine Learning Methods To Theoretical Surface Science, Shane Carr Dec 2015

Applying Bayesian Machine Learning Methods To Theoretical Surface Science, Shane Carr

McKelvey School of Engineering Theses & Dissertations

Machine learning is a rapidly evolving field in computer science with increasingly many applications to other domains. In this thesis, I present a Bayesian machine learning approach to solving a problem in theoretical surface science: calculating the preferred active site on a catalyst surface for a given adsorbate molecule. I formulate the problem as a low-dimensional objective function. I show how the objective function can be approximated into a certain confidence interval using just one iteration of the self-consistent field (SCF) loop in density functional theory (DFT). I then use Bayesian optimization to perform a global search for the solution. …


Computational Simulation Of Mass Transport And Energy Transfer In The Microbial Fuel Cell System, Shiqi Ou Dec 2015

Computational Simulation Of Mass Transport And Energy Transfer In The Microbial Fuel Cell System, Shiqi Ou

Doctoral Dissertations

This doctoral dissertation introduces the research in the computational modeling and simulation for the microbial fuel cell (MFC) system which is a bio-electrochemical system that drives a current by using bacteria and mimicking bacterial interactions found in nature. The numerical methods, research approaches and simulation comparison with the experiments in the microbial fuel cells are described; the analysis and evaluation for the model methods and results that I have achieved are presented in this dissertation.

The development of the renewable energy has been a hot topic, and scientists have been focusing on the microbial fuel cell, which is an environmentally-friendly …


Size-Controlled Large-Diameter And Few-Walled Carbon Nanotube Catalysts For Oxygen Reduction, Xianliang Wang, Qing Li, Hengyu Pan, Ye Lin, Yujie Ke, Haiyang Sheng, Mark T. Swihart, Gang Wu Nov 2015

Size-Controlled Large-Diameter And Few-Walled Carbon Nanotube Catalysts For Oxygen Reduction, Xianliang Wang, Qing Li, Hengyu Pan, Ye Lin, Yujie Ke, Haiyang Sheng, Mark T. Swihart, Gang Wu

Faculty Publications

We demonstrate a new strategy for tuning the size of large-diameter and few-walled nitrogen-doped carbon nanotubes (N-CNTs) from 50 to 150 nm by varying the transition metal (TM = Fe, Co, Ni or Mn) used to catalyze graphitization of dicyandiamide. Fe yielded the largest tubes, followed by Co and Ni, while Mn produced a clot-like carbon morphology. We show that morphology is correlated with electrocatalytic activity for the oxygen reduction reaction (ORR). A clear trend of Fe > Co > Ni > Mn for the ORR catalytic activity was observed, in both alkaline media and more demanding acidic media. The Fe-derived N-CNTs exhibited …


Preparations And Properties Of Polybenzimidazole/Polyvinylbenzyl Crosslinked Composite Membranes For High Temperature Proton Exchange Membrane Fuel Cells, Jin-Kai Jin-Kai, Yong-Yi Jiang, Wang-Zhen Wang-Zhen, Xiao-Jin Li, Zhi-Gang Shao, Bao-Lian Yi Oct 2015

Preparations And Properties Of Polybenzimidazole/Polyvinylbenzyl Crosslinked Composite Membranes For High Temperature Proton Exchange Membrane Fuel Cells, Jin-Kai Jin-Kai, Yong-Yi Jiang, Wang-Zhen Wang-Zhen, Xiao-Jin Li, Zhi-Gang Shao, Bao-Lian Yi

Journal of Electrochemistry

In order to increase the chemical stability of polybenzimidazole (PBI) membrane, a highly stable polymer, poly vinylbenzyl chloride (PVBC), was chosen as the macromolecular crosslinker, and 1H-1,2,4-triazol was adopted to prepare the crosslinked PBI-based membranes. The influence of the PVBC amount on membrane characteristic was investigated in detail. The results indicated that the crosslinked structure of the membrane effectively improved the chemical stability, and at the same time, the membrane presented good mechanical property and proton conductivity. The fuel cell performance for the membrane was tested with hydrogen and oxygen single cell without humidification at 150 oC, and the maximum …


Guaiacol Hydrodeoxygenation Over Platinum Catalyst: Reaction Pathways And Kinetics, Danni Gao, Yang Xiao, Arvind Varma Oct 2015

Guaiacol Hydrodeoxygenation Over Platinum Catalyst: Reaction Pathways And Kinetics, Danni Gao, Yang Xiao, Arvind Varma

Yang Xiao

Guaiacol represents a large fraction of lignin derived pyrolysis bio-oils. It was shown in our prior work that Pt has higher activity and stability for guaiacol hydrodeoxygenation as compared to other noble metal catalysts. In the present study, further theoretical and experimental investigations were conducted to reveal the reaction pathways and kinetics. For Pt/C catalyst in a fixed-bed reactor, the main liquid phase reaction products were phenol, catechol and cyclopentanone. Because cyclopentanone was typically not observed in the prior literature, a pathway for its formation was proposed and supported by density functional theory (DFT) calculations. By varying the space velocity, …


Synthesis, Characterisation, Electrochemical, And Spectroscopic Studies Of Cobaloximes: Unique Clues Of Cobalt(I) Species In Various Solvents, Michael John Celestine Oct 2015

Synthesis, Characterisation, Electrochemical, And Spectroscopic Studies Of Cobaloximes: Unique Clues Of Cobalt(I) Species In Various Solvents, Michael John Celestine

Chemistry & Biochemistry Theses & Dissertations

With the dwindling amount of fossil fuels in the world’s reserve is said to run out in the future. The use of alternative fuels such as hydrogen can be produced from renewable sources. One source is the use of first row transition metal complexes that can harness the power of the sun to reduce protons to hydrogen. In this thesis we investigated a well-known hydrogen evolution catalyst in a quest to understand the behavior of different oxidation states that occur during the catalytic cycle.

In an attempt to synthesize a binuclear ruthenium(II) complex, [{Ru(phen)2}2{µmes(1,4-phO-Izphen)3}](PF6)4, as a possible photosensitizer for the …


Catalytic Deoxygenation Of Guaiacol Using Methane, Yang Xiao Sep 2015

Catalytic Deoxygenation Of Guaiacol Using Methane, Yang Xiao

Yang Xiao

Guaiacol, produced by thermal degradation of lignin, represents a model compound for upgrading of fast pyrolysis bio-oils by deoxygenation. In our prior work, with Pt/C catalyst, such a process using H2 was studied. To overcome the high cost of H2, methane is used in this work to deoxygenate guaiacol. On Pt/C catalyst, in terms of guaiacol conversion and product distribution, methane is found to exhibit as good deoxygenation performance as H2. The lifetime of this catalyst, however, is short (<3 h). The lifetime of Pt–Bi/C catalyst is extended (no significant deactivation in 5 h), by addition of bismuth as a …


Catalytic Conversion Of Glycerol To Value-Added Chemical Products, Malaya Ranjan Nanda Sep 2015

Catalytic Conversion Of Glycerol To Value-Added Chemical Products, Malaya Ranjan Nanda

Electronic Thesis and Dissertation Repository

Rapid expansion of biodiesel industry has generated a huge amount of crude glycerol. This thesis aimed to explore utilization of glycerol for the production of solketal as an oxygenated fuel additive and 1, 2-propanediol as a pre-polymer via catalytic conversion.

The thesis work may be divided into two major parts. In the first part, the thermodynamics and kinetics of the glycerol ketalization for the synthesis of solketal were investigated in a batch reactor. From this information, a continuous-flow process was designed, developed and optimized using pure glycerol. Crude glycerol (13 wt% purity) was successfully upgraded into a purified crude glycerol …


Characterization Of Iron Phthalocyanine As The Cathode Active Material For Lithium-Ion Batteries, Sarwan S. Sandhu, Joseph P. Fellner Sep 2015

Characterization Of Iron Phthalocyanine As The Cathode Active Material For Lithium-Ion Batteries, Sarwan S. Sandhu, Joseph P. Fellner

Chemical and Materials Engineering Faculty Publications

The developed thermodynamic functions for the determination of Gibbs free energy, enthalpy, and entropy of formation of solid lithium-iron phthalocyanine (LixFePc) from solid lithium and iron phthalocyanine as a function of x, defined as g-moles of the intercalated lithium per g-mole of iron phthalocyanine, at a fixed set of temperature and pressure conditions are presented. In addition, a proposed expression for the evaluation of lithium diffusion coefficient in solid iron phthalocyanine as a function of both x and temperature, and the experimental results from the ongoing research/development work on the lithium/iron phthalocyanine cells are included.


Effect Of Carbon Nanotubes On Anodic Properties Of Ti/Ru-Ir-Sn Oxides, Feng Lian, Yong-Lei Xin, Bo-Jiang Ma, Li-Kun Xu Aug 2015

Effect Of Carbon Nanotubes On Anodic Properties Of Ti/Ru-Ir-Sn Oxides, Feng Lian, Yong-Lei Xin, Bo-Jiang Ma, Li-Kun Xu

Journal of Electrochemistry

The Ru-Ir-Sn metal oxide anodes coated on titanium (Ti/Ru-Ir-Sn) were prepared by thermal decomposition. The effects of amounts of carbon naotubes (CNTs) on anodic properties were studied by TGA, SEM, EDS, cyclic voltammetry, EIS, polarization measurements and accelerated life test. The thermogravimetric analysis and EDS spectrum data showed that the high temperature oxidation decomposition of CNTs did not take place under the condition of the sintering temperature of 470 ℃, and the CNTS still existed in the anode coating in an element form. Compared with the contrast samples, the surface crack of the coating increased, but remained typical morphology. Adding …


Mechanism Study On The Electrocatalytic Oxidation Of Acetylene To Oxalic Acid, Xiu-Li Song, Rui-Long Jia, Wen-Yan Dong, Zhen-Hai Liang Aug 2015

Mechanism Study On The Electrocatalytic Oxidation Of Acetylene To Oxalic Acid, Xiu-Li Song, Rui-Long Jia, Wen-Yan Dong, Zhen-Hai Liang

Journal of Electrochemistry

A new method of electrocatalytic synthesis oxalic acid from acetylene was explored and the synthesized oxalic acid was characterized by Ultraviolet-visible spectrophotometry (Uv-vis) and Infrared spectroscopy (IR). First-principles calculations were carried out to examine the adsorption of acetylene over the Pt(111) surface. The electrocatalytic oxidation behavior of acetylene has been investigated on a Pt electrode by cyclic voltammetry (CV) and steady-state polarization in Na2SO4 solution. The formation mechanism of oxalic acid in the Na2SO4 solution was proposed and the transfer coefficients of the reaction were calculated. The results show that acetylene molecule tends to …


Synthesis, Structure And Electrochemical Performance Of Na2Mnsio4/C Cathode Material For Na-Ion Batteries, Shou-Ding Li, Jiang-Huai Guo, Yong Xie, Jin-Xiao Mi, Yong Yang Aug 2015

Synthesis, Structure And Electrochemical Performance Of Na2Mnsio4/C Cathode Material For Na-Ion Batteries, Shou-Ding Li, Jiang-Huai Guo, Yong Xie, Jin-Xiao Mi, Yong Yang

Journal of Electrochemistry

As a promising cathode material for sodium ion batteries, pure phase Na2MnSiO4/C nanocomposite was successfully synthesized by a sol-gel method with a citric acid as a complex agent. The as prepared material was characterized by XRD, FTIR, SEM and TEM techniques. XRD and Rietveld refinement results indicated that the sample was indexed as monoclinic structure with space group of Pn. It was observed by SEM and TEM that the obtained product consisted of micro-scaled secondary particles, which were composed of NaMnSiO4 nanocrystallites and amorphous carbon network. More importantly, the uniform carbon network in the nanocomposite …


Effect Of Adsorption Potential On Co Oxidation At Au@Pt Nanoparticles Electrodes, A Surface Enhanced Raman Spectroscopic Study, Pu Zhang, Yi Wei, Yong-Li Zheng, Yan-Xia Chen, Zhong-Qun Tian Aug 2015

Effect Of Adsorption Potential On Co Oxidation At Au@Pt Nanoparticles Electrodes, A Surface Enhanced Raman Spectroscopic Study, Pu Zhang, Yi Wei, Yong-Li Zheng, Yan-Xia Chen, Zhong-Qun Tian

Journal of Electrochemistry

The adsorption/oxidation of CO on the 55 nm Au@0.7 nm Pt nanoparticles electrode in both potentiodynamic and potentiostatic modes were investigated by surface enhanced Raman spectroscopy in a thin layer electrochemical flow cell under controlled mass transport, with the aim of clarifying the origin CO oxidation at lower electrode potentials (in current pre-wave region of corresponding cyclic voltammograms). Our results demonstrated that the CO oxidation kinetics differed significantly from the three kinds of different CO adsorption history, with almost no CO oxidation current in the pre-peak potential region after 0.35 VRHE CO adsorption with or without subsequent holding the …


Synthesis And Electrochemical Performance Of Mn3O4/Graphene Composites, Shan-Shan Yang, Qian Zhang, Xiong-Gui Lin, Ming-Sen Zheng, Quan-Feng Dong Aug 2015

Synthesis And Electrochemical Performance Of Mn3O4/Graphene Composites, Shan-Shan Yang, Qian Zhang, Xiong-Gui Lin, Ming-Sen Zheng, Quan-Feng Dong

Journal of Electrochemistry

The Mn3O4/Graphene composites were synthesized by hydrothermal method with the in-situ redox reaction of graphene oxide (GO) and manganese acetate (Mn(Ac)2). The phase structures and morphologies of the materials were characterized by XRD, SEM and TEM. The XPS and IR techniques were used for studying the residual function groups of reduced graphene oxide (RGO). The electrochemical performances of the hybrids were tested in a coin cell. Results showed that the composites prepared with the addition of ammonia water (RM-A) have better performance. The graphenes in RM-A were better-reduced and the Mn3O4 particles were much …


Tungsten Carbide/Carbon Electrode Material Synthesized By Block Copolymer Template Method, Xiao-Ling Lang, Ye-Kun Jiang, Mei-Qin Shi, Ling-Zhi Kang, Chun-An Ma Aug 2015

Tungsten Carbide/Carbon Electrode Material Synthesized By Block Copolymer Template Method, Xiao-Ling Lang, Ye-Kun Jiang, Mei-Qin Shi, Ling-Zhi Kang, Chun-An Ma

Journal of Electrochemistry

At present, one of the major hurdles for commercialization of system with direct methanol fuel cell (DMFC) is still the requirement of a significant amount of platinum (Pt) catalyst to achieve an acceptable power density. Pt and Pt-based metals are expensive due to limited supplies. In order to find the catalyst alternative to the Pt metal, we selected tungsten carbide (WC) and its composites as the study object. We synthesized WC with carbon materials as the suitable support to modify the electronic structure and to increase the specific surface area of WC. In this study, tungsten carbide/carbon (WC/C) was prepared …


Preparation And Characterization Of Carbon Supported Pd-Sb Composite Nanocatalysts For Formic Acid Electrooxidation, Long-Long Wang, Xiao-Lu Cao, Ya-Jun Wang, Jin-Hao Ping, Qiao-Xia Li Aug 2015

Preparation And Characterization Of Carbon Supported Pd-Sb Composite Nanocatalysts For Formic Acid Electrooxidation, Long-Long Wang, Xiao-Lu Cao, Ya-Jun Wang, Jin-Hao Ping, Qiao-Xia Li

Journal of Electrochemistry

Palladium is considered as an efficient anode catalyst with high catalytic activity for electrooxidation of formic acid. To further improve the catalytic activity and stability, alloying or surface modification with Sb is an effective way. In this work, the well dispersed carbon supported Pd-Sb composite nanocatalysts (Pd-Sb/C) were synthesized by traditional impregnation reduction method with trisodium citrate as the complexing agent, sodium borohydride as the reducing agent. The morphologies of Pd-Sb/C and the effects of molar ratio of Pd to Sb on the electrocatalytic properties of Pd-Sb/C for HCOOH electrooxidation were studied. The XRD and XPS analyses on the as-prepared …


Determining Glucose Isomerization Mechanisms On Lewis Acidic Beta Zeolites Using Isotropic Tracer Studies And 1h Nmr, Jacklyn N. Hall, Michael J. Cordon, Rajamani Gounder Aug 2015

Determining Glucose Isomerization Mechanisms On Lewis Acidic Beta Zeolites Using Isotropic Tracer Studies And 1h Nmr, Jacklyn N. Hall, Michael J. Cordon, Rajamani Gounder

The Summer Undergraduate Research Fellowship (SURF) Symposium

Biofuels synthesized from biomass sources are becoming necessary for sustainable production due to their significantly lower net CO2 production than fuels synthesized from fossil-based carbon sources such as petroleum. Catalytic pathways for the primary biomass-to-biofuels reaction pathway include the isomerization of glucose to fructose, which can be catalyzed by either Lewis acids or bases. Isolated metal atoms and metal oxide particles on Beta zeolites serve as active sites that catalyze this reaction through a Lewis acid 1,2-intramolecular hydride shift or by a Lewis base proton transfer mechanism, respectively. The Lewis acid mechanism has proven to have higher fructose selectivity …


The Role Of Environmental Dynamics In The Emergence Of Autocatalytic Networks, Joe Fusion Jul 2015

The Role Of Environmental Dynamics In The Emergence Of Autocatalytic Networks, Joe Fusion

Dissertations and Theses

For life to arise from non-life, a metabolism must emerge and maintain itself, distinct from its environment. One line of research seeking to understand this emergence has focused on models of autocatalytic reaction networks (ARNs) and the conditions that allow them to approximate metabolic behavior. These models have identified reaction parameters from which a proto-metabolism might emerge given an adequate matter-energy flow through the system. This dissertation extends that research by answering the question: can dynamically structured interactions with the environment promote the emergence of ARNs? This question was inspired by theories that place the origin of life in contexts …


Hydrotreatment Of Lignin Into Green Fuels And Chemicals, Matthew Tymchyshyn Jul 2015

Hydrotreatment Of Lignin Into Green Fuels And Chemicals, Matthew Tymchyshyn

Electronic Thesis and Dissertation Repository

Concerns about declining non-renewable fossil resources, energy security, climate change and sustainability are increasing worldwide. This has resulted in an increased interest in the development of alternatives to fossil resources not only for energy, but particularly for chemical production on a global level. There are a number of promising alternatives to fossil resources, however, lignocellulosic biomass such as forestry residues and wood waste (limbs, bark, sawdust, etc.) seem to be the most promising. They are widely available, renewable and a non-food resource. Therefore woody biomass holds the promise of being a sustainable resources for both energy and chemical production.

The …


Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization And Applications, Jose A. Saucedo Jr, Yang Xiao, Arvind Varma Jul 2015

Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization And Applications, Jose A. Saucedo Jr, Yang Xiao, Arvind Varma

The Summer Undergraduate Research Fellowship (SURF) Symposium

Bimetallic catalysts have been explored and shown to exhibit unique characteristics which are not present in monometallic catalysts. Platinum is well known as an effective catalyst for oxidation and reduction reactions, and it can be made more effective when bismuth is introduced as a promotor. Thus, the effectiveness of the Pt-Bi catalyst was demonstrated in prior work. What is not clear, however, is the mechanism behind the catalyst function; why addition of bismuth to platinum decreases deactivation and increases selectivity, and how effective would the Pt-Bi catalyst be in deoxygenation reactions? In this work, the effectiveness of different variations of …


Design & Analysis Of Ø40” X 80” Conventional Sugar Mill Head Stock., Santosh Y. Salunkhe Jul 2015

Design & Analysis Of Ø40” X 80” Conventional Sugar Mill Head Stock., Santosh Y. Salunkhe

Innovative Research Publications IRP India

Sugar mill head stock play a significant role in the sugar plant as they have to sustain the forces experienced by the rollers while extracting juice from the cane. The present analysis related to modification in sugar mill head stock Ø40”X80”. This paper describes the advantages of using Ø40”X80” mill head stocks by designing & analysis by ANSYS software. In this study theoretical study has been done considering the Bending moment & force polygon diagrams. Bending moment factor which helps in finding actual results. By changing various parameters the performance of mill head stocks is studies using static structural analysis …


Pt/C Modified Proton Exchange Membrane For Improved Fuel Cell Performance, Zhi Cui, Chao Wang, Shui-Yun Shen, Feng-Jing Jiang, Jun-Liang Zhang Jun 2015

Pt/C Modified Proton Exchange Membrane For Improved Fuel Cell Performance, Zhi Cui, Chao Wang, Shui-Yun Shen, Feng-Jing Jiang, Jun-Liang Zhang

Journal of Electrochemistry

The property of proton exchange membrane greatly affects the performance of proton exchange membrane fuel cells (PEMFC). During the operation of a PEMFC, the water produced at the cathode, the water vapor from the humidified feed gas and the water migrated by electro-dragging will reach a balance in the membrane and determine the resistance of PEMFC, and thus affect the performance of PEMFC. Normally, the PEMFC performance strongly depends on the relative humidity of the feed gas, and the performance decreases at lower humidity as a result of lower proton conductivity of the membrane. In this paper, we proposed to …


Synthesis Of Graphene Wrapped Li-Rich Layered Metal Oxide And Its Electrochemical Performance, Meng-Yan Hou, Ke Wang, Xiao-Li Dong, Yong-Yao Xia Jun 2015

Synthesis Of Graphene Wrapped Li-Rich Layered Metal Oxide And Its Electrochemical Performance, Meng-Yan Hou, Ke Wang, Xiao-Li Dong, Yong-Yao Xia

Journal of Electrochemistry

In present work, lithium-rich layered transition metal oxide (LLO) was synthesized by a co-precipitation method in combination with a solid-state reaction. The graphene wrapped Li-rich layered oxide composite (LLO/Gra) was obtained by sintering the LLO/GO composite at 300 oC for 30 min in an air. The morphologies and the electrochemical performances were characterized by means of SEM, TEM, XRD, XPS, EIS and charge/discharge tests. The results indicated that the LLOe particles were uniformly wrapped with graphene. The resulting material exhibited better rate capability than that of pristine LLO since the wrapped graphene demonstrated the enhanced electronic conductivity. Accordingly, the …


Enhancing Stability Of Pem Fuel Cell Catalysts Via Support Changing, Xiao-Hong Xie, Zi-Dong Wei Jun 2015

Enhancing Stability Of Pem Fuel Cell Catalysts Via Support Changing, Xiao-Hong Xie, Zi-Dong Wei

Journal of Electrochemistry

The Pt/C catalyst with highly dispersed Pt nanoparticles supported on carbon has been widely used as the state-of the-art catalyst in proton exchange membrane fuel cells (PEMFCs), while the durability of Pt/C is one of the major barriers for large-scale applications of PEMFCs. Thus, enhancing the stability of Pt/C has been a hot issue in this field. In this review, we summarize the recent progress in enhancing the catalyst stability in the view of support material. The future prospects of the PEMFCs catalyst should focus on adopting more stable supports or strengthening the interactions between Pt and supports.


Photocatalytic Mineralization Of Phenol On Fluidized Titanium Oxide-Coated Silica Gel, Guillermo J. Rincon May 2015

Photocatalytic Mineralization Of Phenol On Fluidized Titanium Oxide-Coated Silica Gel, Guillermo J. Rincon

University of New Orleans Theses and Dissertations

A bench-scale tubular reactor with recirculation was built in order to study the efficiency of the photocatalytic oxidation of phenol on fluidized titanium oxide-coated silica gel beads. A UV-C lamp placed along the central vertical axes of the reactor was used as source of photons. A bed of silica gel beads was fluidized by means of fluid recirculation and forced to follow upward helical flow around the lamp. Anatase was successfully synthetized on silica gel particles of average diameters 224, 357 and 461 µm, as confirmed by scanning electron micrographs, through a sol-gel technique using a titanium (iv)isopropoxide / hydrochloric …


Oxygen Reduction Reaction By Copper Complex Based Electrocatalysts, Congling Zhang May 2015

Oxygen Reduction Reaction By Copper Complex Based Electrocatalysts, Congling Zhang

Doctoral Dissertations

My research focuses on catalysis of oxygen reduction reaction (ORR) by a series of Cu(II) [copper with positive two valence] -1,2,4-triazole complex-based electrocatalysts at the cathode of PEMFC (polymer electrolyte membrane fuel cell), an efficient and environmental friendly energy conversion system compared to internal combustion engines in use today. The sluggish kinetics of ORR considerably limited the performance of PEMFCs. Understanding of ORR mechanism is important for developing affordable, active and durable ORR catalysts for such devices.

The first part of my work focused on improving the ORR performance of Cu(II)-1,2,4-triazole complex-based catalysts in an acidic environment by exploring synthesis …


Development And Demonstration Of Critical Components Of Aluminum Based Energy Storage Devices Using The Chloroaluminate Ionic Liquids, Mengqi Zhang May 2015

Development And Demonstration Of Critical Components Of Aluminum Based Energy Storage Devices Using The Chloroaluminate Ionic Liquids, Mengqi Zhang

Doctoral Dissertations

This dissertation considers the development of porous carbon materials as the substrates for Al deposition/dissolution in an Al based ionic liquid flow battery (ILFB) and demonstration of an Al based hybrid supercapacitor. The Aluminum chloride/ 1-ethyl-3-methylimidazolium chloride chloroaluminate ionic liquid is utilized as the electrolyte for these Al based energy storage devices. The ILFB has less capital cost than the all-vanadium redox flow battery because of the inexpensive AlCl3. The feasibility to equip a tank of solid aluminum chloride in an ILFB system aiming to improve energy density is investigated. A critical range of temperature data (50-130 celsius …


Nanonickel Catalyst Reinforced With Silicate For Methane Decomposition To Produce Hydrogen And Nanocarbon: Synthesis By Co-Precipitation Cum Modified Stöber Method, Upm Ashik, Wma Wan Daud May 2015

Nanonickel Catalyst Reinforced With Silicate For Methane Decomposition To Produce Hydrogen And Nanocarbon: Synthesis By Co-Precipitation Cum Modified Stöber Method, Upm Ashik, Wma Wan Daud

upm ashik

Co-precipitation cum modified Stöber method is a continuous process avoiding application of higher temperature treatment before supporting nanometal with SiO2, irrespective of pre-preparation methods. We have conducted the co-precipitation process without undertaking calcination under air in order to avoid even a partial particle agglomeration and hence maintained average particle size [similar]30 nm after enforcing with SiO2. This is the first report adopting such an unceasing preparation for preparing metal/silicate nanostructures. Furthermore, n-Ni/SiO2 nanostructured catalysts were used for thermocatalytic decomposition of methane to produce hydrogen and carbon nanotubes. The catalyst was found to be very stable and the methane transformation activity …